Abstract
Data mining is a process of discovery of relationship, patterns and knowledge from data. The emergence of network-based cluster computing environment has created a natural demand for scalable techniques of data mining that can be exploit the full benefit of such environments. In this paper, we described system architecture for scalable and portable data mining architecture for clustered environment. The architecture contains modules for secure safe-thread communication, database connectivity, organized data management and efficient data analysis for generating global mining model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and P. K. Chan. “Jam: Java agents for meta-learning over distributed databases”. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pages 74–81, Newport Beach, CA, August 1997. AAAI Press.
S. M. Bailey, R. L. Grossman, H. Sivakumar and A. L. Turinsky, “Papyrus: A System for Data Mining over Local and Wide Area Clusters and Super-Clusters”. Technical report, University of Illinois at Chicago.
H. Kargupta, B. Park, D. Hershberger, and E. Johnson, (1999), “Collective Data Mining: A New Perspective Toward Distributed Data Mining”. Advances in Distributed and Parallel Knowledge Discovery, 1999. MIT/AAAI Press.
A. L. Prodromidis, P. K. Chan and S. J. Stolfo. (2000). “Meta-Learning in Distributed Data Mining Systems: Issues and Approaches”. Advances in Distributed and Parallel Knowledge Discovery, AAAI/MITPress.
P. Liu and Z. Du, “Cluster Trend: Data Speaking”. Proceedings of the IEEE International Conference on Cluster Computing, 2001.
J. Hong and D. Kim, “Hierarchical Cluster for Scalable Web Servers”. Proceedings of the IEEE International Conference on Cluster Computing, 2001.
H. Kargupta, I. Hamzaoglu and B. Stafford “Scalable, Distributed Data Mining An Agent Based Application”. Proceedings of Knowledge Discovery And Data Mining, August, 1997.
J. Chattratichat, J. Darlington, Y. Guo, S. Hedvall, M. Kohler, and J. Syed “An Architecture for Distributed Enterprise Data Mining”. HPCN, Amsterdam, 1999.
O. Rana, D. Walker, M. Li, S. Lynden and M. Ward, “PaDDMAS: Parallel and Distributed Data Mining Application Suit”. Proceedings of the Fourteenth International Parallel and Distributed Processing Symposium, pages 387–392.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ashrafi, M.Z., Taniar, D., Smith, K.A. (2002). A Data Mining Architecture for Clustered Environments. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds) Applied Parallel Computing. PARA 2002. Lecture Notes in Computer Science, vol 2367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48051-X_10
Download citation
DOI: https://doi.org/10.1007/3-540-48051-X_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43786-4
Online ISBN: 978-3-540-48051-8
eBook Packages: Springer Book Archive