
Derivation of Backup Service Management
Applications from Service and System Models

Ingo Lück 1, Marcus Schönbach 1, Arnulf Mester 1, Heiko Krumm 2

1 Dr. Materna GmbH, Voßkuhle 37, D-44141 Dortmund, Germany
{Ingo.Lueck|Marcus.Schoenbach|Arnulf.Mester}@materna.de

2 FB Informatik, LS IV, Universität Dortmund, D-44221 Dortmund, Germany
krumm@cs.uni-dortmund.de

Abstract. The backup of large data sets is preferably performed automatically
outside of regular working hours. In highly structured computer networks, how-
ever, faults and exceptions may relatively frequently occur resulting in unsuc-
cessful subprocesses. Therefore automated fault and configuration management
is of interest. We report on a corresponding management system. Besides of
monitoring and information provision it performs automated fault analysis and
recovery functions under extension of the service management approach to the
function-oriented management of information processing services. Moreover, it
is model-based. An interactively constructed object-oriented model specifies
management objectives and represents dependencies between the backup serv-
ice provided and the services used. Moreover, the model is input to the deriva-
tion of the management application code. Thus, the combination of service
management and modeling supports the productive development of automated
management applications. The system is implemented on the basis of the Java
Dynamic Management Kit and performs the management of a commercial net-
work backup system in a heterogeneous environment.

Keywords. model-based management, IT-service management, derivation of
management systems, model-based development of management systems

1. Introduction

The notion of service management firstly occurred in the field of telecommunication
network management as an answer to the growing complexity of networks and the
user demand for a broad and flexible spectrum of high-quality services. It introduces
an abstract and user-oriented view which complements the traditional resource-
centered management and provides a common and technology-independent context
for component management [Hal96]. Meanwhile, not only telecommunication but
also information processing organizations were subject to a shift from technology
provision to service provision. The users now start to demand more than technology-
dependent best-effort support of few applications. The services of applications and
their availability, performance, security, and reliability needs shall be addressed by
so-called service level agreements. The business users want to rely upon application

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 243-255, 1999.
c Springer-Verlag Berlin Heidelberg 1999

services as tools supporting their mission within the enterprise. The information proc-
essing organization shall achieve and maintain the agreed service levels by means of
service-oriented management measures forming the so-called IT-service management
[Mcb98] which presently can be supported by service monitoring, reporting, and ca-
pacity planning tools (e.g., [Haw98]).

Future application management systems, however, shall have a high degree of
automation and shall preferably perform more than only monitoring and performance
management operations. The notion of IT-services complies with both requirements.
IT-services define abstract and user-oriented objectives of automated management
which are not restricted to quantity-oriented operations for accounting, performance
management, and quality of service control but also can guide the more function-
oriented operations of configuration, fault, and security management. Nevertheless,
function-oriented management operations are relatively specific. They mostly depend
not only on the services provided and on the services used but also to a certain extent
on the available resources and the dependencies between resources, services, excep-
tions, and faults. Due to the broad variety of business-near application services, there-
fore, an extensive set of tailored components for the automated management is needed
and special support for the productive management component development is of
interest.

Our work represents one promising step into the direction of productive develop-
ment of management systems for automated and function-rich management of IT-
services. It consists of two parts. In principle, we propose a model-based development
approach. In a practical case study, we applied the approach to an enterprise-wide
backup service. The model-based development starts with an abstract model of the
services to be provided which is directly oriented at the job definitions of the backup
service system. In fact, the initial model is mechanically derived from the job defini-
tions. Thereafter, it is interactively refined by the introduction of the services used, of
the resources, and of the dependencies between. The resulting detailed model is fi-
nally subject to the generation of management components. In this way, a powerful
design and development support is realizable which moreover may in the future be
improved by supplying pre-defined generic model elements. The practical case study
achieves the automated fault and configuration management of enterprise-wide dis-
tributed and heterogeneous backup services (moreover, performance management and
capacity planning functions are integrated). We chose backup services, since on the
one hand, of course, backup services are more basic and less specific than business-
oriented applications. They therefore seemed to be more appropriate for experimenta-
tion with a new approach. On the other hand there was a real needs to automate the
operation of nightly backup processes which have to copy large data sets in a highly
structured network under the presence of faults and exceptions.

In more detail, backups are performed by a commercial network-based backup
system [Leg97]. The management system is distributed and based on the Java Dy-
namic Management Kit J-DMK [Jdm98]. Management agents reside in the client and
server hosts of the backup system. They forward notifications and operating system
information to the manager. Moreover, they can influence and restart components of
the backup service and of the used services. The manager – derived from the model
definition by a modeler tool – installs and configures the agents by means of J-DMK-
functions. It communicates with its agents via events and remote method invocations.
Before the establishment of this management system problems occurred which caused

244 Ingo Lück et al.

incomplete operation of backup processes. Mostly used services (e.g., domain name
servers) were not available. Moreover, sometimes backup demons on client hosts had
to be restarted. Now the introduced manager monitors the state of the necessary sys-
tem services. It reacts on problem notifications by automated recovery of used serv-
ices, by restarts of backup demons, and by repetitions of backup processes leading to a
decrease of incomplete backups. Moreover, it provides detailed and pre-processed
information for non-automated fault-management measures.

Our model-based approach for the definition of management objectives and for the
derivation of the manager code is related to several existing approaches. So, in the
sequel we first give an overview over the usage of models for management systems.
Thereafter we outline the backup service to be managed in more detail. The next sec-
tion presents the modeling and is followed by a description of the production of the
manager. Finally we sketch the implemented system and note down concluding re-
marks.

2. Model-Based Management

Meanwhile many management approaches are based on explicit model notions re-
sulting in a variety of modeling techniques and applications. In order to relate our
approach to this existing work, we provide a short general classification of model-
based management. Moreover this gives an overview and may help to identify further
directions of model applications. Before, we shortly outline the use of models in the
field of general software development which basically influences the design of man-
agement systems.

As Booch, Rumbaugh, and Jacobson point out in connection with their proposal of
the unified modeling language UML [Uml97], models simplify reality and support the
concentration on essentials, thus facilitating understanding and design. They devote
UML to the modeling of systems under development. Several diagram types corre-
spond to submodel types serving for the description of different aspects of structures
and behaviors with the objective of visualizing, specifying, constructing, and docu-
menting designs. Besides of UML, other models, like workflow process models
[War94], development process models [Gra95], data base and information system
models [Ere92], communication protocol and process behavior models [Tur93], as
well as very specialized models of certain application-domains (e.g., system theoretic
models of control loops in real-time systems) are in use. In general, models may re-
flect aspects of system development at all or of systems and their embedding on their
own describing requirements, system structures, data schemes, system architectures,
or functions and behaviors. They may aim at description and documentation support-
ing the understanding of humans, at conception of machine-processable implementa-
tion parts, or at specification of man-machine interfaces. Models may also exceed
description and provide for explicit means of human or mechanical reasoning. They
may be in use at design time, at compile / application generation time, or at runtime.

In the field of automated management, models may serve for specialized purposes
and may concentrate on special functional areas (e.g., FCAPS, change or service
management). Models may support typical development tasks (e.g., system analysis
resulting in requirements and policies as well as design and implementation resulting
in specifications, code modules, administration and modification schemes) or direct

245Derivation of Backup Service Management Applications

operation by maintaining structured system information and providing corresponding
notions (e.g., for representation and processing of monitoring and audit information or
for documentation and handling of changes or troubles). Models may be related to
integral views of a system as a whole (e.g., the sum of service provisions) or they may
focus on components like the managed system, the management system, or parts of
them (e.g., certain managed objects, some agents). They may concentrate on static
structures, on dynamic functional behavior, or on performance and quality of service
properties. On a high abstraction level models may reflect corporate strategies. On a
lower level tactical relations of certain management domains may be modeled, while
more detailed models may focus on operational elements.

From the utilization point of view, following modes of model application are of
main interest:

• Specifications for system development
Static information models of managed objects define the scheme of the manage-
ment information base MIB. This early and widely applied approach [Mib91,
Gdm92] is the starting point of many extensions and improvements. So, extended
MIBs can serve as basis for the definition of management policies [Wie94]. The
more recent approach of the common information model CIM supports unified
views for the integral management of complex and heterogeneous IT-environments
[Cim98].

• Formal specifications
Formal models as they are described by formal specifications can support rigorous
design analysis and verification. Moreover the models can be used for the genera-
tion of test cases (e.g., based on Z-specifications of managed objects [Fer97]).

• Design by model refinement
The stepwise refinement of models can coincide with the refining design of system
parts (e.g., refining transformation of policies in [Wie95]).

• Analysis and Checks
Models and model-based reasoning techniques can support the analysis of man-
agement systems under development (e.g., detection of conflicts in policy sets
[Lup97]).

• Simulations of system elements
Model-based simulations can substitute parts of a real system in order to support
early tests [Lun96].

• Prototypes and animations
Besides of simulation for the purpose of testing, animated man-machine interfaces
and prototypical function implementations may be of interest in order to support
communication with customers and staff training.

• System generation
Implementation elements can be generated from model definitions. So, [Enj96] and
[Hei96] derive code from models statically. Furthermore, the common MIB-
compiler tools translating information schemes into code stubs have to be men-
tioned here.

• Runtime functions
Explicit model representations which are interpreted at runtime can contribute to
the implementation of management functions. [Sab97] translates constraint models
into code of diagnostic functions for network fault management. [Ohs97] applies

246 Ingo Lück et al.

descriptions of event models for automated event correlation. [Kae97] traverses
fault propagation models at runtime in order correlate events and isolate faults.
[Rod97] calculates the availability of applications from attributed service depend-
ency graphs.

• Adaptive models
Model adaptation at runtime – well-known in real-time control systems – may also
be of interest for future management systems. On one hand, model adaptations can
reflect system changes, on the other, the model quality may be enhanced by model
improvements which utilize runtime feedback information.

Combinations of different modes of model application may be possible. So our ap-
proach for model-based backup service management constructs an object-oriented
model at design time which serves for the specification of management objectives and
for the description of the managed system. Moreover, at compile time application
code is derived from this model. Like [Rod97] the model describes the service pro-
vided, the different services used, and the dependencies between. As in [Kae97], the
model information supports the localization of faults and the selection of appropriate
recovery procedures.

3. Backup Service and Management

A backup-service is a client / server - architecture based service, that is responsible
for saving and restoring local and remote data in a distributed environment.

There are two basic backup mechanisms. A full backup is a complete copy of all
the data to be saved, whereas an incremental backup copies that data only that have
been changed since the last backup process. In general, backup copies can be pro-
duced with or without compression and with or without verification of the copied data
on the backup medium (e.g., tape, optical disk). A schedule lays down when which
type of backup copy has to be made. If restoration of data is needed the time it takes
depends on the type of backup copies that are available. Restoring from a full backup
is relatively fast in contrast to the case where several incremental backup sets have to
be taken into consideration. A backup application is often a distributed program. On
the one hand there can be many different hosts (backup-clients in this context) that do
not have a backup device of their own but manage data to be saved. On the other hand
there can exist a series of backup-servers that receive client data over the net and save
it to connected backup devices.

The backup-service consists of two parts, one part creates the backups, the other
performs restoration. Quality parameters are reliability, backup creation speed, restore
speed, and complete automation (e.g., no manual change of backup media should be
needed). Complete automation is especially important for the backup creation, be-
cause this is often done outside of regular working hours – mostly at night – when
there is minimal other load on data network and hosts. The success of all actions of
the backup-service should be documented in a log-file with corresponding reasons if
unsuccessful. Furthermore the backup-service should support heterogeneous environ-
ments and should be scaleable.

There are various services used by the backup-system. A backup-server uses
backup-devices as well as the CPU, memory and the hard disks of its host system.

247Derivation of Backup Service Management Applications

Domain name servers are used to resolve IP-addresses. The network is used to trans-
fer control and backup data. On a client-host the CPU and memory are used by the
backup-client process (e.g., for data compression). The hard disk may be used for a
local index-database. The quality of these services (e.g., CPU usage, memory usage,
domain name server availability, network throughput and error rate) influences the
quality of the backup-service.

Legato-Networker, the backup system we use in our implementation, knows four
types of physical components: backup-devices, servers, interfaces (network-interfaces
that are available in server-hosts) and clients [Leg97]. Additionally, there are some
logical elements supporting definition and management of backup-services. Backup-
groups are used to form groups of clients with comparable backup requirements.
Schedules are assigned to single clients or to save-groups. They document at what
time or period what type of backup should be created. Label-templates define patterns
for the generation of names (labels) for backup-media. Volume pools allow the as-
signment of backup-data (determined by backup-group, client, and / or backup-type)
to particular backup-media and document if entries to the client’s index-databases
should be made. Policies mainly determine how long data in the media- and index-
database are stored. Moreover, directives can state special procedures for particular
files. Finally event notifications have to be mentioned. They are generated to transmit
state and error messages to specified destinations.

For the management of the Legato-Networker backup service we identified the
following functional requirements: fault detection, isolation and logs, fault tolerance
measures (backup process recovery, reconfiguration of used services), performance
monitoring and capacity planning, as well as convenient graphical presentations of log
information (events, event reactions, performance and status data).

4. Backup System Model

The model has to meet the following list of requirements. Appropriate representation
of service level agreement is needed. Additionally the model has to support monitor-
ing of the quality level at runtime. By that, assessment of service quality is enabled.
Documentation is another important task. So, documentation of the configuration has
to be supported for the backup service provided (e.g., save-groups, schedules, poli-
cies) as well as for the services used (e.g., which domain name server is used by a
host). Furthermore relations between service components among themselves (e.g.,
schedules related to save-groups) and relations between service components and
services used (e.g., assignment of backup-servers to hosts) have to be modeled. The
fundamental requirement on the model is that the management application can be
derived from it automatically. Finally fault detection, isolation and recovery has to be
supported at runtime (e.g., if address resolution fails the corresponding domain name
server has to be checked and possibly be restarted).

In order to meet this broad spectrum of requirements we use an object-oriented
model, since even highly-structured domains can be represented in an easy-to-survey
and flexibly extendable way. Moreover, dependencies and links can be represented by
associations and runtime functions can be introduced by method implementations in a
straight-forward way. The object classes used in our model are grouped in three pack-

248 Ingo Lück et al.

ages as shown in Fig. 1 The Service Model package contains a class for every logical
element supporting definition and management of backup-services. Additionally there
are some classes that are used for service quality assessment. The Service Level
Agreement class uses Assessment Scales to map service quality onto comparable states
(i.e., OK, warning, critical). The physical components known by the backup-system
are represented by classes in the System Model package. For interfaces and devices
Performance Measurements are taken that can be viewed by administrators of the
backup-services for analysis purpose. The Services Used package contains in addition
to the Services themselves also Service Configurations (e.g., the amount of memory
available in a host), Service States (e.g., memory usage for a host) and Fault Detec-
tion Logs (if for example a domain name server has to be restarted this action is
documented). Except for the Services of the Services Used package all classes of the
model are represented by Java classes. So, a model is built of Java object instances.

ServerClient

Policy Label
Template

DirectiveScheduleGroupPool

Assessment
Scales Events

Service Level
Agreement

Device

Interface

Performance
Measurements

Service Model

Services

Fault Detection
Logs

Service
Configurations

Service
States

Services Used

System Model

class

package

dependence

Fig. 1. UML package diagram of the model

249Derivation of Backup Service Management Applications

The generation of the model for a given backup service is supported by a modeler
tool and performed in four steps. At first the tool evaluates the backup system’s con-
figuration file. It generates and initializes most of the required object instances auto-
matically. Secondly, the services used and the underlying resources are introduced.
Here, the tool supports the guided interactive refinement of the model. The adminis-
trator can browse on the existing model and activate dialogs which create model ob-
jects and set attribute values and links. Thirdly, some Services of the Services Used
package need detailed manual configuration. The SNMP-service for instance needs a
port-number and a community-string to be set. Finally, some parameters of the man-
agement system may be adjusted manually (e.g., length of intervals for taking meas-
urements, communication-protocol and port-numbers to be used for manager-agent
communication).

5. Application Production and Model Utilization

The backup service management system has a traditional basic component structure.
It consists of a manager application and a series of agents. The agents provide access
to the managed objects comprising the backup application components as well as the
objects of the services used by the backup application (i.e., host operating system
services, backup device, file systems, and network interfaces). Moreover, the man-
agement systems contains the modeler tool. It supports the generation and interactive
refinement of the model. Additionally, it communicates with the management appli-
cation and provides the man-machine interface of the management system. Fig. 2
outlines this structure. On the right it shows the backup system, on the left the man-
agement system. Interfaces between management system and managed system are the
backup system’s configuration file – which is read by the backup system as well as by
the management system – and the management agents’ accesses to the managed ob-
jects. The modeler tool derives the code of the manager and decides the basic configu-
ration of agents. It installs the manager which for its part installs the agents. During
runtime the manager forwards current configuration and performance values to the
modeler which displays convenient status representations to the administrator on
demand.

The system model is represented by a configuration of object instances and main-
tained by the modeler tool as outlined in the last section. This object model is the
source of information for the derivation of the code of the management system. For
that purpose, the modeler tool transforms the model into an extended model which
contains the model-specific management data and functions and will later on be part
of the manager. Moreover, each agent will contain a copy of a small part of the
model. The creation of the extended model coincides with the last two interactive
model refinement steps. It is mainly performed by subclass refinement. For certain
classes of the model (e.g., Group, Client, Device) corresponding subclasses are de-
fined which add management-relevant attributes and methods. Object instances of the
original classes are replaced by instances of the subclasses in the extended model.
Initial values of new attributes are partially derived from an exploration of the existing
model (e.g., direct links to used services in client objects). Other values are subject of
interaction with the administrator (e.g., port-numbers and protocols to be used). The

250 Ingo Lück et al.

new methods directly perform management functions (e.g., installation and initializa-
tion of agents, fault isolation and recovery). Thus, the main parts of the manager ap-
plication are supplied by the extended model. Moreover, the application code only
contains a fixed frame and definitions of basic auxiliary classes. During runtime, the
manager application maintains the extended model and updates status and perform-
ance attributes of its objects.

Manager

Extended model

Modeler

Model

interactive refinement &
management MMI

Backup
Server Application

Server Agent

Client Agent

Backup
Client Demon

communicate

generate, install

backup system
configuration file

configuration &
performance data

host config.

device/medium

network IF

host config.

file system

network IF

install

generate

read /

write /

notifications
install

generate

Fig. 2. Overview over management system and managed system

The subclass ManagedClient of the model class Client shall exemplify the refine-
ment of the extended model. The attributes of Client mainly comprise lists of devices,
save-groups and save-sets, configuration descriptions, and finally links to backup
server, server interface, schedule, browse policy, retention policy, and save directives.
The methods of Client perform reading and writing of data attributes, generation of
graphical data representations, and creation of object copies. The subclass Managed-
Client adds links to the used services (i.e., client-, network-, demon-, and SNMP-
service), to the measurement scheduler, and to the agent frame. Moreover, data attrib-
utes represent the IP-address of the client and serve for the management of measure-
ment timestamps. The methods manage and access the client’s measurement sched-
uler, retrieve and restart the client’s domain name server and backup demon, and
finally reset measurement containers.

251Derivation of Backup Service Management Applications

One important usage of the extended model is the service-oriented fault manage-
ment. The handling of a negative save-group notification shall serve as corresponding
example. Let the notification be created by the backup server application and received
by the server agent of the management system. Then, the agent transforms the notifi-
cation into a Java event and forwards it to the manager which is listed as event lis-
tener. The event mainly carries the name of the save-group, the number of clients, a
list of faulty clients, timestamps, and a list of status data for each save-set (i.e., save-
set name, client name, backup level used, duration of save, number of files and vol-
umes, number of trials, list of files not saved, fault reason). Based on the extended
model, the manager firstly resolves the save-set and client names. Thereafter the cli-
ent reference serves as starting point and the fault reason serves as selector for an
exploration of the connections of the client model object to the objects of the fault-
relevant used services. For instance, the fault reason ‘connection refused’ can (besides
of others) refer to a non-operational backup demon of the client. Therefore, the model
exploration will reach the demon object. Its status is tested and in case of non-
operation, the manager requests a demon restart from the agent of the corresponding
client. Finally, the manager restarts the faulty backup subjobs. To avoid infinite re-
covery repetitions the performed recovery measures are recorded in the model and the
number of retries is limited. Moreover, in connection with a formerly non-restartable
backup demon the fault reason ‘connection refused’ can refer to a necessary reboot of
a client. In this case the manager checks if it has the right to reboot this client and if
so, initiates the reboot.

Another typical fault is the failing of the name/address-resolution due to non-
operational or non-reachable domain name servers. In this case, the backup applica-
tion is not able to connect to a client. In consequence of the fault event, the manager
identifies the responsible domain name server and checks its status. Mostly the host is
operational while the domain name server is down. Then the manager requests a re-
start of the domain name server from the corresponding domain name server man-
agement agent.

6. Implementation and Operation

The backup management system is implemented on the basis of the Java Dynamic
Management Kit J-DMK [Jdm98] which applies the Java Bean component model
[Bea98] in order to support flexible agents. Agent data structures and function imple-
mentations can be implemented by explicit and lately bindable code components, the
so-called Beans. During runtime, agents can pull necessary Beans from a server or
managers can push Beans to agents. The Beans act as runtime plugins and dynami-
cally extend the agent’s functionality. There are Beans implementing supporting
services (like Core Management, Repository, SNMP-Communication). Moreover, so-
called M-Beans implement management functions and the local access to managed
objects (e.g., Backup Client Bean, Operating System Bean, Network Interface Bean).

Fig. 3 gives an overview over the J-DMK-based implementation. After the interac-
tive definition of the model, the modeler produces serialized external forms of the
manager and of the necessary agent Beans. After installation and start of the manager,
it creates the necessary agents (one for each host) and establishes communication
connections to them. Finally, it pushes to each agent the corresponding set of Beans.

252 Ingo Lück et al.

The Bean set depends on the type of the host (backup client or server, type of operat-
ing system and network connection).

communication

producesModeler

Manager

serialized manager

serialized agent beans

Agent

RMI-Adapter

Beans

installation

installation push of beans

Beans, e.g.:
J-DMK Core Management
Metadata- and Repository Service
SNMP Communication
Configuration Data (System and Adapter)
System Discovery Responder
Backup Client Bean
Backup Server Bean
Demon and Network Interface
Notification Interface
Event Parser
Backup Device Bean
Performance and Configuration

Fig. 3. J-DMK-based implementation

The whole management system – consisting of modeler, manager and agents – is
implemented by approx. 400 Java classes (additionally, there are approx. 80 BeanInfo
classes). The summed up length of the class files results in approx. 1.4 MB. The seri-
alized form of the model needs about 20 KB per client host. The model-dependent
parts of the manager need about 8 KB per client. The supply of model information to
an agent has only to transfer about 9KB of serialized model substructures. The total
byte code length of the components is: modeler approx. 1.4 MB, manager approx. 800
KB, server agent approx. 550 KB, client agent approx. 450 KB.

The management system operates in a local computer network which consists of
approx. 120 backup client computers with various operating systems (i.e., Solaris,
SunOS, HP-UX, Sinix, SCO, AIX, Windows NT). Backups are performed by one
backup server which meanwhile is connected with an 500 GB DLT drive. Each night
about 30 MB backup data are copied where full backups are achieved for approx. 6
clients (approx. 12 GB). Before the introduction of the backup management system
mainly following faults caused unsuccessful subjobs:

• Failing name/address-resolution due to unavailable domain name servers (approx.
5 per month),

• Access conflicts to Network File System volumes due to incorrect mounts (approx.
10 per month, owing to a recent update of the backup application software now
also most of these exceptions can successfully be handled by the backup applica-
tion on its own),

• Backup demons on client hosts are unreachable or not operational (approx. 2 per
month),

• Total client breakdowns (approx. 1 per month).

253Derivation of Backup Service Management Applications

Now, the described backup service management system supports recovery for nearly
all of the occurring faults resulting in a rate of unsuccessful backup subjobs of only
approx. 1.5 per month.

7. Conclusion

We proposed a combination of service-oriented and model-based management which
complies with two essential requirements of improved management systems, abstrac-
tion and automation, both enhancing the productivity of administrators. Service-
orientation supports the identification and definition of abstract management objec-
tives. Modeling supports the technology-independent consideration and description of
application-internal dependencies thus supplying the information base for automated
management functions. Both abstractions contribute to easy understanding and help
administrators to deal efficiently with extended working domains as they result from
modern integrated network, system, and application management tasks.

References

[Bea98] Sun Microsystems: Java Beans Specification; Sun Microsystems Inc., Palo Alto,
1998, available via http://java.sun.com/beans/docs/spec.html

[Cim98] Desktop Management Taskforce: Common Information Model - Specification 2.0;
Desktop Management Taskforce Inc. DMTF, 1998, available via
http://www.dmtf.org/spec/

[Eji96] M. Ejiri, S. Goyal (eds.): Proc. of the IEEE/IFIP Int. Symposium on Network Opera-
tions and Management NOMS’96, IEEE, 1996

[Enj96] A. Enjou, M. Tomobe: The Software Synthesis of Network Management Systems; in
[Eji96], pg. 414-433, 1996

[Ere92] C. Batini, S. Ceri, S. Navathe: Conceptual Database Design - An Entity-Relationship
Approach; Benjamin, Cummings, 1992

[Fer97] G. Fernandez, J. Derrick; Formal Specification and Testing of a Management Archi-
tecture; in [Laz97], pg. 473-484, 1997

[Gdm92] ISO / ITU-CCITT: Information Technology - Open Systems Interconnection - Struc-
ture of Management Information: Guidelines for the Definition of Managed Objects
(GDMO); ISO-IEC IS 10165-4 also ITU/CCITT Recommendation X.722, 1992

[Gra95] G. Graw, V. Gruhn: Process Management in-the-Many; in: W. Schäfer (ed.) Software
Process Technology, Proc. of the 4th European Software Process Modeling Work-
shop, Springer-Verlag, LNCS 913, pg. 163-178, 1995

[Hal96] J. Hall (ed.): Management of Telecommunication Systems and Services; LNCS 1116,
Springer-Verlag, Berlin, 1996

[Haw98] M. Haworth: Service Management and Availability Planning for Data Backup and
Recovery; HP Open View Service Management Solutions, White paper, Hewlett-
Packard Company, Palo Alto, 1998

[Hei96] K. Heiler, R. Wies: Policy Driven Configuration Management of Network Devices;
in [Eji96], pg. 674-689, 1996

[Jdm98] Sun Microsystems: Java Dynamic Management Kit; Sun Microsystems Inc., Palo
Alto, 1998, available via http://www.sun.com/software/java-dynamic/

[Kae97] S. Kätker, M. Paterok: Fault Isolation and Event Correlation for Integrated Fault
Management; in [Laz97], pg. 583-596, 1997

254 Ingo Lück et al.

[Laz97] A. Lazar et al. (eds.): Integrated Network Management V, Proc. 5th IFIP/IEEE Int.
Symposium on Integrated Network Management, Chapman & Hall, London, 1997

[Leg97] Legato NetWorker: The Key to High-Performance, Scaleable Storage Management;
White paper, Legato Inc., Palo Alto, 1997, available via
ftp://www.legato.com/legato/marcom/pdf/W008.html

[Lun96] A. Lundqvist, T. Grönberg: Network management simulators; in [Eji96], pg. 552-562,
1996

[Lup97] E. Lupu, M. Sloman: Conflict Analysis for Management Policies; in [Laz97], pg.
430-443, 1997

[Mcb98] D. McBride: Successful Deployment of IT Service Management in the Distributed
Enterprise; White paper, Hewlett-Packard Company, Palo Alto, 1998

[Mib91] M. Rose, K. McCloghrie: Concise MIB Definitions; Internet Request for Comments
RFC 1212, (1991)

[Ohs97] D. Ohsie, A. Maier, S. Kliger, S. Yemini: Event Modeling with the MODEL Lan-
guage; in [Laz97], pg. 625-637, 1997

[Rod97] G. Rodosek, T. Kaiser: Determining the Availability of Distributed Applications; in
[Laz97], pg. 207-218, 1997

[Sab97] M. Sabin, R. Russel, E. Freuder: Generating Diagnostic Tools for Network Fault
Management; in [Laz97], pg. 700-711, 1997

[Tur93] K. Turner (ed.): Using Formal Description Techniques - An Introduction to Estelle,
Lotos and SDL; John Wiley, New York, 1993

[Uml97] G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language User Guide;
Addison-Wesley, Reading, 1997

[War94] B. Warboys: Reflections on the Relationships Between BPR and Software Process
Modeling; in P. Loucopoulos (ed.), Proc. 13th Int. Conf. on the Entity-Relationship
Approach, Springer-Verlag, LNCS 881, pg. 1-9, 1994

[Wie94] R. Wies: Policies in Network and Systems Management - Formal Definition and
Architecture; Journal of Network and Systems Management, 2,1(1994)63-83

[Wie95] R. Wies: Using a Classification of Management Policies for Policy Specification and
Policy Transformation; in Proc. of the 4th IFIP/IEEE Int. Symposium on Integrated
Network Management, Santa Barbara, 1995

255Derivation of Backup Service Management Applications

	Introduction
	Model-Based Management
	Backup Service and Management
	Backup System Model
	Application Production and Model Utilization
	Implementation and Operation
	Conclusion
	References

