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Abstract. The UniForM Workbench supports combination of Formal Methods
(on a solid logical foundation), provides tools for the development of hybrid,
real-time or reactive systems, transformation, verification, validation and test-
ing. Moreover, it comprises a universal framework for the integration of meth-
ods and tools in a common development environment. Several industrial case
studies are described.

1 Introduction

The UniForM Workbench (Universal Formal Methods Workbench, cf. [K+96, K+99,
Kri99]) has been developed by the Universities of Bremen and Oldenburg, and Elpro,
Berlin, funded by the German Ministry for Education and Research, BMBF.

Formal Methods are used in modelling, using a mathematically well-founded
specification language, proving properties about a specification and supporting cor-
rect development. The need arises in many aspects and properties of software, or
more generally systems: for the physical environment of a hybrid hardware / software
system, for the timing behaviour and real-time constraints of an embedded system, for
the hazards and safety requirements of a safety-critical system, for the concurrent in-
teractions of a reactive system, for deadlock and livelock prevention, for performance
and dependability analysis, for architectural and resource requirements, and, finally,
at many stages of the software development process for requirements and design
specifications, etc., to the implementation of a single module.

It is unrealistic to expect a unique standard formalism to cover all the needs listed
above. Instead, the solution is a variety of formalisms that complement each other,
each adapted to the task at hand: specification languages and development method-
ologies, specific development methods or proof techniques, with a whole spectrum of
tool support. Thus the challenge is to cater for correct combination of formalisms to
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(1) ensure correct transition from abstract to concrete specifications when switching
between formalisms during the development process ("vertical composition"),

(2) ensure correct combination of formalisms in a heterogeneous situation, e.g. com-
bining concurrent and sequential fragments ("horizontal composition"),

(3) enable verification of particular properties, e.g. adherence to a security model,
absence of deadlocks or satisfaction of performance requirements.

Another issue is the correct combination and integration of tools to support Formal
Methods. Tools invariably differ in the exact language or semantics they support; the
tool combination has to realize a correct combination of the resp. methods.

2 Combination of Methods

2.1 Integration into the Software Life Cycle

Integration of Formal Methods into Existing Process Models is important for suc-
cess in industry. The Software Life Cycle Process Model V-Model [VMOD] origi-
nally a German development standard, has become internationally recognised. As
many such standards, it loads a heavy burden on the developer by prescribing a mul-
titude of documents to be produced. Thus tool support is essential to
(1) tailor the V-model first to the needs of a particular enterprise, then
(2) tailor the V-model to the special project at hand, fixing methods and tools,
(3) support its enactment guiding and controlling the use of methods and tools, and
(4) provide automatically generated development documents.
Up to now, tool support for working with the V-Model has mostly been provided by
stand-alone project management components, facilitating the document production
process for the project manager. In the UniForM project, we have adopted a different
approach to V-Model utilisation: Formally speaking, the V-Model is a generic speci-
fication for the system development process. Tailoring the V-Model for a particular
enterprise means instantiating this development process specification by determining
• the products (specifications, code, hardware, tests, proofs etc.) to be created,
• the activities and people responsible for each product,
• the methods to be used for each development step, and
• the tools to be used for application of these methods.
We are convinced that this instantiation process is best performed in the development
environment itself, so that the tailoring process will not only have project manage-
ment documents as output but simultaneously configure the Workbench for the spe-
cific configuration to be used in the development project.

This approach is presently implemented by Purper [BW98, Pur99a, b] in the
Graphical Development Process Assistant, adapting the V-model to formal methods,
where development and quality assurance are intimately related. The V-model is pre-
sented as a heavily interwoven hypertext document, generated from a common data-
base, and tool support items 1 to 4 above; cf. also fig.1. Integration into a develop-
ment environment such as the UniForM Workbench allows the coordination with its
methods and tools (item 3). Tools themselves can generate development documents in
conformance with the V-model (cf. item 4), such as the development history of fig. 6.
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Fig. 1. Example of a V-Model Process Graph as supported by the UniForM Workbench

Combination of Conventional, Semi-Formal and Formal Techniques arises natu-
rally when interfacing with other methods in the context of the V-model. Safety con-
siderations, and thus the employment of formal methods, will often be restricted to
parts of a system. Ideally, graphical interfaces will give the illusion of working with
an informal method while an underlying formal semantics provides hooks to the use
of formal methods (cf. PLC-Automata in section 2.2 and 3.1).

At the same time, it is sometimes advisable to flip back and forth between informal
techniques at a high level of abstraction, e.g. requirements analysis, and formal meth-
ods, once more detail is required; complete formalisation might be premature and
rather a burden, but formal methods are already useful at an early stage to support the
analysis. An example is the specialisation of fault trees for hazard analysis to develop
safety requirements and safety mechanisms [LMK98].

2.2 Combination of Formal Methods

Combinations of Formal Methods are by no means easy to achieve. The need for re-
search has been recognised and requires demanding mathematical foundations, such
as advanced methods in category theory. This has lead to languages for "institution
independent" heterogeneous composition of modules ("in the large", see e.g. [AC94,
Tar96, Dia98]); approaches for reasoning about correct composition of the logics
capturing the semantics "in the small" (see e.g. [Mos96, Mos99b, MTP97, MTP98,
SSC98, S+98]) introduce notions such as embedding, translating one formalism to
another, combination of two formalisms, or projecting to either from the combination.
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Fig. 2. Semantic Representation in UniForM

Semantic Representation. The approach of UniForM is to represent the semantics
underlying a particular formalism or language in higher-order logic (HOL) as it is re-
alized in the logical framework Isabelle [Pau95]. Fig. 2 shows a tiny Logic Graph for
Z, CSP and their projections from the combination Z+CSP, plus the logic encoding
into HOL at the meta level. Specifications in these languages are represented as theo-
ries in Isabelle and used for theorem proving with the verification system IsaWin on
top of Isabelle (cf. section 3.3), and, as a basis for transformational development (cf.
section 3.4), for proving the correctness of transformation rules.

HOL-Z, HOL-CSP and HOL-CASL. In HOL-Z, the logic of Z has been represented
(cf. [KSW96a, KSW96b, K+97, Kol97, L+98]) and the mathematical tool kit has
been proved correct (in co-operation with the ESPRESS project); this resulted in ca.
1k theorems, a 4k line proof script, and ca. 3 person-years of effort.

HOL-CSP represents the logic of CSP; a small but pervasive error in the 20 year
old theory of CSP has been found and corrected [TW97, Tej99]. The process algebra
has been proved correct; this resulted in ca. 3k theorems, a 17k line proof script, and
ca. 3 person-years of effort. The example shows that such an endeavour is by no
means trivial but pays off in the end. The proof of correctness of transformation rules,
in particular, is now much easier. The above statistics includes the effort of becoming
familiar with the intricacies of Isabelle, and most of the effort went into the proof of
the process algebra of CSP. A subsequent representation of the logics and static se-
mantics of CASL  basic specifications (including an intricate overloading resolution)
only required about 1 person-year of effort [MKK98].

Reactive Real-Time Systems. The first instantiation of UniForM has been for Z and
CSP since these are considered to be rather mature and have been successfully ap-
plied to industrial cases. At the moment, we are working on methods ("structural
transformations") to project not only from Z+CSP (actually Object-Z, cf. [Fis97,
FS97] ), but also from CSP+t, i.e. CSP with real-time constraints, to CSP without
such constraints on the one hand, and simple timer processes on the other, cf. fig. 3.
Thus specialised methods can be used in the projected domains. This breakdown is
also successfully used for testing of real-time and hybrid systems (cf. section 3.4).

Combination of CSP and Object-Z. Whereas CSP is well suited for the description
of communicating processes, Object-Z is an object based specification method for
data, states and state transformations.  Motivated by previous work at Oldenburg in
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the ESPRIT Basic Research Action ProCoS (Provably Correct Systems) [ProCoS], a
combination of both methods into the specification language CSP-OZ has been pro-
posed in [Fis97, FS97]. In CSP-OZ the process aspects are described using CSP and
the data aspects using Object-Z. A specific achievement is the simple semantics of the
combination which is based on two ideas:
• the embedding of Object-Z into the standard semantic model of CSP, the so-called

failures/divergences model [Ros97]
• the semantic definition of the combination by the synchronous, parallel composi-

tion of the CSP part and the Object-Z part of a CSP-OZ specification.
Thus to each CSP-OZ specification a semantics in the failures/divergences model is
assigned. As a consequence the concept of refinement of this model is also applicable
to CSP-OZ. It has been shown that both process refinement of the CSP part and data
refinement of the Object-Z part yield refinement of the whole CSP-OZ specification
[Hal97]. Thus FDR (failures/divergences refinement), a commercially available
model checker for CSP [FDR96], can also be applied to CSP-OZ specifications.

Target Code

PLC-
Automata

PLC-Code

DC

Normal Form
Translation

Transformation in
Isabelle/HOL

CSP/Timer

CSP/TimerC

Z + CSP CSP + t

Z

ZC CSPC

CSP

Z + CSP + t

C-Code C-Code/ Interpreter

Hybrid Systems 

Real-Time Systems

Fig. 3. Method Combination in UniForM

Combination of PLCs and Duration Calculus. For the specification of time critical
aspects of computer systems, the Duration Calculus (DC for short, cf. [ZHR92]) was
chosen from the start of the UniForM project. DC is intended for a formalization of
high-level requirements.

On the lowest level, Programmable Logic Controllers (PLCs for short) were con-
sidered because they are simple devices that are widespread in control and automation
technology. A PLC interacts with sensors and actuators in a cyclic manner. Each cy-
cle consists of three phases: an input phase where sensor values are read and stored in
local variables, a state transformation phase where all local variables are updated ac-
cording to the stored program, and an output phase where the values of some of the
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local variables are output to the actuators. Real-time constraints can be implemented
on PLCs with the help of timers that can be set and reset during the state  transforma-
tion phase. The reaction time of a PLC depends on the cycle time.

One of the challenges of the UniForM project was to bridge the gap between Dura-
tion Calculus and PLCs in such a way that the correctness of the PLC software can be
proven against the requirements formalised in DC. One of the discoveries in the
UniForM project was that the behaviour of PLCs can very well be modelled using a
novel type of automaton called PLC-Automaton [Die97], cf. fig. 4. The semantics of
PLC-Automata describes the cyclic behaviour of a PLC; it is defined in terms of the
Duration Calculus. Thus PLC-Automata represent a combination of the concept of
PLC with DC. This enables us to integrate PLC-Automata into a general methodology
for the design of real-time systems based on DC [Old98].
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Fig. 4: PLC-Automaton

The CoFI Standard Family of Specification Languages. A standard formalism for
all aspects of formal methods seems pragmatically undesirable (if not impossible)
since a projection to a restricted and supposedly simpler formalism allows easier rea-
soning and specialised tools. However, standardisation should be aimed for in well-
defined areas. IFIP WG 1.3 (Foundations of System Specification), based on more
than 7 years of experience of the ESPRIT WG COMPASS, (cf. [Kri96]), started the
Common Framework Initiative for Algebraic Specification and Development, CoFI.

CoFI, an international effort by primarily European groups, is developing a family
of specification languages, a methodology guide and associated tools. The major lan-
guage in this family, the Common Algebraic Specification Language CASL, has just
been completed; it is the basis for sublanguages and extensions in the family. It has a
complete formal semantics. CASL is a rather powerful and general specification lan-
guage for first-order logic specifications with partial and total functions, predicates,
subsorting, and generalized overloading [CoFI, C+97, Mos97]. Sublanguages of
CASL, in connection with the planned extensions towards higher-order, object-
oriented and concurrent aspects, allow interfacing to specialised tools and mapping
from/to other specification languages [Mos99a]; this aspect is crucial for its intended
impact. Various parsers exist; the first prototype implementation in the UniForM
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Workbench [MKK98] comprises static semantic analysis for basic specifications and
theorem proving in Isabelle; it will be the basis for transformational development.

Fig. 5: The Moby/PLC tool for the development of PLC-Automata

3 Tools for Development

3.1 Development of PLC Software

At the University of Oldenburg a tool called Moby/PLC was designed and imple-
mented that supports the work with PLC-Automata [DT98], see fig. 5. The tool com-
prises the following components:
• a graphical editor for drawing PLC-Automata
• a simulator for networks of PLC-Automata
• a compiler for generating PLC code in ST (Structured Text), a dedicated program-

ming language for PLCs
• an algorithm for the static analysis of real-time constraints
• compilers for generating input for the real-time model checkers UPPAAL [B+95]

and KRONOS [D+96]
• a synthesis algorithm for generating PLC-Automata from specifications written in

a subset of Duration Calculus, so-called DC Implementables.
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3.2 Tools for CSP-OZ

For the combined specification language CSP-OZ a graphical editor called Moby/OZ
was developed. It is based on the same class library as the Moby/PLC tool. The editor
enables the user to perform type checking using the Object-Z type checker "wizard".

3.3 Verification

Formal Methods are meant for the development of dependable systems: apart from
safety and security, aspects of availability, reliability, fault-tolerance, and a general
adherence to functionality requirements are important. Thus correctness is only one
aspect, but obviously at the heart of the matter. In particular in safety-critical do-
mains, application developers become increasingly aware of the importance of meth-
ods guaranteeing correctness w.r.t. a formal specification requirements, be it by the
invent-and-verify paradigm, synthesis or transformation.

Abstraction to Verify Special Properties. In [B+97, BPS98, UKP98], a technique
for abstracting from an existing program to verify the absence of deadlocks and live-
locks was developed. It was applied successfully to more than 25k lines of Occam
implementing a safety layer of a fault tolerant computer to be used in the International
Space Station Alpha developed by DASA RI, Bremen; thus it is scalable and applica-
ble to realistic applications.

The concrete program is abstracted to a formal specification in CSP containing
only the essential communication behaviour; the approach guarantees that the proof
for the abstract program implies the proved property for the concrete one. If the proof
fails, the property does not hold, or the abstraction is not yet fine enough. The task is
split into manageable subtasks by modularisation according to the process structure,
and a set of generic composition theories developed for the application. The modules
are then model-checked using the tool FDR [FDR96].

The abstraction was done by hand; future research will focus on implementing
formal abstraction transformations in the UniForM Workbench to support the process.

Model-Checking is a very important technique in practice. The FDR tool [FDR96] is
very useful for CSP, mostly for validating specifications, proving properties such as
deadlock-freeness, and for development, proving the correctness of a refinement in
the invent-and-verify paradigm. But it can do more: the transition graph it generates
can be interpreted at run-time; this technique has been used for the safety layer of a
computer on-board a train (see section 5.3). The abstraction and modularisation
method applied to the International Space Station, described in the preceding para-
graphs, shows two things:
• Model-checking is extremely useful when the resp. data-types are essentially enu-

meration types and the systems small enough.
• For large systems, these properties are likely to be violated; reasoning about

modularisation and composition properties is necessary; proof tools are desirable.
Thus both model-checking and (interactive) proofs should go hand in hand. In the
UniForM Workbench, the FDR tool can be used within the interactive proof tool.

1193The UniForM Workbench, a Universal Development Environment



Moreover, the experience of [HP98] when solving the train control problem in
general (cf. also section 5.3) has been that reasoning about algebraic properties at a
high level of abstraction is necessary, with subsequent refinements; model-oriented
specifications and model-checking are not enough for this very practical problem that
had defied a general solution thus far.

Fig. 6. The Isabelle Proof Assistant IsaWin in UniForM

A Window to Isabelle. The UniForM Workbench makes extensive use of the generic
theorem prover Isabelle [Pau95], and heavily relies on the possibilities for interaction
and tactic definition. A graphical user interface, a "window to Isabelle", IsaWin, has
been constructed that hides unnecessary details from the uninitiated user [K+97,
LW98]. Objects such as theories, substitutions, proof rules, simplification sets, theo-
rems and proofs are typed (cf. fig. 6); icons can be dragged onto each other or onto
the manipulation window to achieve various effects. This graphical and gesture-
oriented approach is as a major advance over the rather cryptic textual interface. In
the example, a set of rewrite rules for simplification is dragged onto the ongoing
proof goal in the manipulation.

3.4 Development by Transformation

Architecture of the UniForM Transformation and Verification System. In fact,
theorem proving and transformation, both a form of deduction, are so analogous, that
the UniForM Verification System IsaWin shares a substantial part of its implementa-
tion with the Transformation System TAS (cf. fig. 7, see [LW98, L+98, L+99]). Like
Isabelle, it is implemented in Standard ML; sml_tk [LWW96] is a typed interface in
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SML to Tcl/Tk; on top, the generic user interface GUI provides the appearance of fig.
6 and fig. 8. This basic system is then parametrized (as a functor in SML terminol-
ogy) either by the facilities for theorem proving of IsaWin or those for transformation
of TAS. In addition, both share focussing and manipulation of scripts, i.e. proofs or
development histories.

Tcl/Tk
Wish

Logics

Standard ML

Isabelle/HOL

sml_tk

Generic GUI

Transformation System TAS

������
������

������
������

�����
�����

Transformation Rules

������
������

�����
�����

�����
�����

Fig. 7. Architecture of TAS, the UniForM Transformation System

Synthesis by Transformation. While the invent-and-verify paradigm is already sup-
ported by IsaWin, we definitely prefer synthesis-by-transformation over invent-and-
verify as the pragmatically more powerful paradigm. First of all, the latter can be im-
plemented by the former as a transformation rule that generates the necessary verifi-
cation condition from the applicability condition. Secondly, this automatic generation
of the required verification conditions is precisely one of the advantages of the trans-
formational approach. The developer can concentrate on the development steps (viz.
applications of transformation rules) first while the verification conditions are gener-
ated on the side and tabled for later treatment. Above all perhaps, single transforma-
tion rules and automated transformation methods embody development knowledge in
a compact and accessible form like design patterns. Transformation rules preserve
correctness; they can themselves be proved correct in UniForM against the semantics
of the object language, e.g. at the level of the logic representation in HOL, cf. fig. 2.

TAS, the UniForM Transformation System. TAS may be parametrized by a logic
(e.g. semantic representation of Z, CSP or CASL) at the Isabelle level, and by trans-
formation rules at the level of TAS itself, cf. fig. 7 [Lüt97, L+99]. On top of the basic
architecture that it shares with IsaWin, TAS provides icons for (program or specifica-
tion) texts, transformation rules (possibly parametrized) and transformational devel-
opments in progress, in analogy to proofs (cf. shaded icon and manipulation window
in fig. 8). In the example, a parametrized transformation rule is applied to the high-
lighted fragment denoted by focussing, and a window for the editing of parameters is
opened. Once input of parameters is completed, the rule is applied, and a further proof
obligation is possibly generated. A proof obligation may be discharged during or after
the development by transferring it to IsaWin or another verification system such as a
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model checker (presently FDR). The example shows the development of a communi-
cation protocol with send / receive buffers by a sequence of transformations in CSP.

The functionality of TAS subsumes that of a forerunner, the PROSPECTRA system
[HK93]. However, the basis of Isabelle allows a more compact, more flexible and
more powerful realisation: parametrization by additional transformation rules is a
matter of minutes (instantiation of a functor rather than recompilation of the whole
system!); static semantic analysis can often be mapped to type checking of Isabelle;
proof tactics can be defined as SML programs and often allow the automation of ap-
plicability conditions, such that much fewer residual verification conditions need to
be interactively proved by the user.

Fig. 8. Application of a Parametrized Transformation Rule

Development History. Note also the History button that allows navigation in the de-
velopment history, in particular partial undo for continuation in a different way. The
whole development is documented automatically and can be inspected in a WWW
browser: initial and current specification, proof obligations, and development history.

Reusability of Developments. The development history is a formal object as well,
(partial) replay is possible. A development can be turned into a new transformation
rule by command; the generated verification conditions are then combined to a new
applicability condition. Combined with abstraction, developments themselves become
reusable in new situations, not just their products.

3.5 Validation, Verification, and Test Environment for Reactive Real-Time
Systems

For real-world large-scale systems, complete formal development is still unrealistic:
The amount of code implementing the application, operating system, drivers and
firmware is simply too large to admit complete formal treatment. Furthermore, many
correctness aspects of reactive systems depend on the interaction of software and
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hardware, and the  number of different hardware components  is too high to allow for
the creation of formal behavioural models of these components. As a consequence,
our recommendation to the Formal Methods practitioner is as follows:
• Try to develop the logical concepts (communication flow, control algorithms, data

transformation algorithms etc.) in a formal way, in order to avoid logical flaws
creeping into system design and implementation.

• Perform formal code development as far as possible, with emphasis on the critical
modules of the system, otherwise use testing and inspection techniques.

• Use automated testing to check the proper integration of software and hardware.
To support such an approach, the VVT-RT (Verification, Validation and Test for
Real-Time Systems) tool kit is currently integrated into the UniForM Workbench:

Verification, Validation, and Testing. The methodology and tool kit VVT-RT
[Pel96, PS96, PS97] allows automatic testing and verification and validation of (test)
specifications. Test cases are generated from a real-time specification; they drive the
completed hardware/software system as a "black box" in a hardware-in-the-loop con-
figuration from a separate computer containing the test drivers, simulating a normal
or faulty environment. The testing theory ensures, that each test will make an actual
contribution, approximating and converging to a complete verification.

Even more important is the automatic test evaluation component of the tool kit: In
practice, the execution of real-time tests will lead to thousands  of lines of timed
traces recording the occurrence of interleaved inputs and outputs over time. Manual
inspection of these traces would be quite impossible. Instead, VVT-RT performs
automatic evaluation of timed traces against a binary graph representation of the for-
mal specification. This approach is very cost-effective. It has been applied success-
fully to one of the case studies of UniForM, a control computer on board of a train for
railway control (see section 5.3), and to an electric power control component of a sat-
ellite developed by OHB, Bremen [Mey98, SMH99].

4 Universal Development Environment

The UniForM Workbench is an open ended tool integration framework for developing
(formal) software development environments from the basis of pre-fabricated off-the-
shelf development tools. The Workbench uses Concurrent Haskell as its central inte-
gration language, extended with a higher order approach to event handling akin to the
one found in process algebras. Integration can therefore be done at a high level of ab-
straction, which combines the merits of functional programming with state-of-the-art
concurrent programming languages.

The Workbench provides support for data, control and presentation integration as
well as utilities for wrapping Haskell interfaces around existing development tools. It
views the integrated Workbench as a reactive (event driven) system, with events
amounting to database change notifications, operating system events, user interactions
and individual tool events. The unique feature of the Workbench is that it provides a
uniform and higher order approach to event handling, which improves on traditional
approaches such as callbacks, by treating events as composable, first class values.
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Fig. 9: System Architecture of the UniForM Workbench

Integration of Tools in the UniForM Workbench is described in detail in [Kar99]
(see also [Kar98]), cf. fig. 9. Control integration is provided by the Subsystem Inter-
action Manager; based on the UniForM Concurrency Toolkit, tools interact in a fine
grained network of communicating concurrent agents and are, in general, loosely
coupled by intermittent adaptors (cf. [Kar97a, Kar97b]). The Repository Manager
[KW97] takes care of data integration with an interface to a public domain version of
the industry standard Portable Common Tool Environment [PCTE94, HPCTE] and
provides version and configuration control, etc. with a graphical interface (using
�������; cf. also fig. 10).

The User Interaction Manager provides presentation integration, incorporating in-
terfaces to ������� (see [FW94, Frö97], and cf. fig. 7 and fig. 10) and its extension
Forest, a WWW-browser, and Tcl/Tk for window management. In particular the latter
two become much more manageable and homogeneous by encapsulation into a typed,
high-level interface in Haskell.

Haskell is the internal integration language; thus even higher-order objects and
processes can be transmitted as objects. External tools are wrapped into a Haskell in-
terface; we are working on an adaptation of the Interface Definition Language of the
industry standard CORBA to Haskell that will shortly open more possibilities to inte-
grate tools in, say, C, C++, or Java.
Architectures for development tools should avoid self-containment and allow integra-
tion with others. The possibility for control and data integration of a tool as an "ab-
stract data type" is the most important (and not obvious since the tool may e.g. not
allow remote control and insist on call-backs); integration of persistent data storage in
a common repository is next (this may require export and import w.r.t. local storage);
presentation integration with the same user interface is last - in fact it is most likely
that the tool has its own graphical user interface. However, interactive Posix tools
usually have a line-oriented interface that can easily be adapted [Kar97b].
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This way, a graphical interface to HUGS was developed in a matter of weeks.
Isabelle, IsaWin and TAS have been integrated, and a Z-Workbench with various tools
has been instantiated from the UniForM Workbench (L+98), cf. fig. 10.

Fig. 10: Z-Workbench

Increase of Productivity by Functional Languages. It is quite obvious that we
should use formal methods eventually to produce our own tools; but is this realistic at
the moment for really large systems? Our experience has been best with functional
programming languages so far; we estimate the increase of productivity over, say, C,
to a factor of 3 (in number of lines, backed by empirical evidence). Without them, the
development of large, non-trivial tools over a period of several years would have been
impossible in an academic environment. TAS and IsaWin are extensions of Isabelle
and comprise about 25k lines of SML; the graph visualisation system ������� with
was developed by Fröhlich and Werner [FW94, Frö97] over a period of 5 years com-
prising about 35k lines of a functional language developed at Bremen, plus about 10k
lines of C for interfacing; the tool integration framework of the UniForM Workbench
was developed almost entirely by Karlsen [Kar99] in about 50k lines of Haskell.
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5 Case Studies

5.1 Control of a Single Track Segment

In close cooperation with the industrial partner Elpro, a case study "control of a single
track segment" was defined. The problem concerns the safety of tram traffic on a
segment where only a single track is available, see fig. 11. Such a bottle-neck can oc-
cur for example during repair work. The task is to control the traffic lights in such a
way that collisions of trams driving in opposite direction is avoided and that certain
general traffic rules for trams are obeyed. Real-time requirements occur locally at the
sensor components ES1, CS1, LS1, ES2, CS2, LS2 near the track.

The methodology of PLC-Automata was applied to this case study. Starting from
informal requirements of the customer, in this case the Berlin traffic company, a net-
work consisting of 14 PLC-Automata was constructed using the Moby/PLC tool as
part of the UniForM Workbench [DT98, Die97]. With Moby/PLC the whole network
could be simulated [Tap97]. Essential safety properties were proven, for example that
at most one direction of the single track segment will have a green traffic light. Then
the network of PLC-Automata was compiled into 700 lines of PLC code in the pro-
gramming language ST (Structured Text), which can be distributed over the PLCs as
indicated in fig. 11.

Fig. 11: Tram Control

5.2 Control of Jena Steinweg

After this first successful experiment with Moby/PLC, the Oldenburg group was
challenged by Elpro to attack a more demanding case study where trams are allowed
to drive into and out of the single track segment in many different ways. This control
was actually implemented by Elpro in the city of Jena, hence the name. The complex-
ity of this case study is due to the fact that the signalling of the traffic lights critically
depends on the history of the last tram movements.
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This case study could also be modelled with Moby/PLC as a network consisting of
110 PLC-Automata. While simulation still worked well, attempts to perform auto-
matic verification of properties by translating the PLC-Automata into input for the
real-time model checkers UPPAAL [B+95] and KRONOS [D+96] failed so far due to
the complexity of the resulting timed automata. This complexity is caused by the fact
that PLC automata take the cycle times of PLCs explicitly into account, in order to
detect problems between communicating PLCs with different cycle times.

SAFETY LAYER

TF INTERFACE LAYER

SYSTEM INTERFACE LAYER

TFinputs DisplayData

SLOSinterface SLMFinterface SLTFZinterface

WATCHDOG
ZUG-

SCHREIBER

TRIEBFAHRZEUGFÜHRER (TF)

Funktionstasten (T) Monitor (M)

MOBILFUNK (MF)

Funkmodem

TRIEBFAHRZEUG (TFZ)

TFZ-Daten Bremssystem AntriebssystemORTUNGS-
SYSTEM (OS)

BC-KONFIG-
DATEN (config)

BORDRECHNER (BC)

8 7 6 5 4 3

1 2

Fig. 12: Architecture of the On-Board Computer

5.3 On-Board Computer for Railway Control

Another case study was the development of a control computer on board of a train for
railway control [AD97]. It is part of a distributed train and switching control system
developed by Elpro, Berlin, where decentralised track-side safety-units control local
points and communicate with trains via mobile phones. The whole system (with sin-
gle tracks and deviations) has been modelled and specified with CSP in a student
project at Bremen (cf. also [HP98] for a solution of the general train control problem).

The on-board computer has a layered architecture (see fig. 12). The TF INTER-
FACE LAYER communicates with the driver, the SYSTEM INTERFACE LAYER with
a localization subsystem (e.g. GPS), a mobile phone subsystem and the train. The
SAFETY LAYER contains all safety-relevant modules, determining the local state of
the train, the requirements on the decentralized units on the track and their answers,
finally leading to a decision about the permission to continue for the driver, or, alter-
natively, a forced-braking command to the train.

The design of the abstracts away from physical data formats in the concrete inter-
faces. The formal specification in CSP as an abstract transition system could be di-
rectly transliterated into an executable program that calls C++ functions of the inter-
faces [AD97, Pel96b].
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The mobile phone based communication of the on-board computer with the track-
side units in the SYSTEM INTERFACE LAYER is an example of the combination of
CSP and OZ [Fis97, FS97], cf. sections 2.2 and 3.2.

The above case studies were done within the UniForM project; for other industrial ap-
plications of the UniForM Workbench cf. the verification of absence of deadlocks and
livelocks for the International Space Station ([B+97, BPS98, UKP98], see section 3.3)
or the automatic testing of an electric power control component of a satellite ([Mey98,
SMH99], see section 3.5).
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