
A Translation of Statecharts to Esterel

S.A. Seshia1?, R.K. Shyamasundar1, A.K. Bhattacharjee2, and
S.D. Dhodapkar2

1 School of Technology & Computer Science,
Tata Institute of Fundamental Research, Mumbai 400 005, India

shyam@tcs.tifr.res.in
2 Reactor Control Division, Bhabha Atomic Research Centre, Mumbai 400 025, India

{anup,sdd}@magnum.barc.ernet.in

Abstract. Statecharts and Esterel are two formalisms that have been
widely used in the development of reactive systems. Statecharts are a
powerful graphical formalism for system specification. Esterel is a rich
synchronous programming language with supporting tools for formal
verification. In this paper, we propose a translation of Statecharts to
Esterel and discuss such an implementation. A characteristic feature
of the translation is that deterministic Statechart programs can be ef-
fectively translated to Esterel and hence, the tools of verification of
Esterel can be used for verifying Statechart programs as well. The
translation serves as a diagnostic tool for checking nondeterminism. The
translation is syntax-directed and is applicable for synchronous and asyn-
chronous (referred to as the superstep model) models. In the paper, we
shall describe the main algorithms for translation and implementation
and illustrate the same with examples. We have built a prototype sys-
tem based on the translation. It has the advantages of the visual power
usually liked by engineers reflected in Statecharts and of a language that
has a good semantic and implementation basis such as Esterel that can
be gainfully exploited in the design of reliable reactive systems.

1 Introduction

Significant amount of research has been done in the last decade in the design
and development of reactive systems. The class of synchronous languages and
various visual formalisms are two approaches that have been widely used in the
study of reactive systems. The family of synchronous languages has based on
perfect synchrony hypothesis which can be interpreted to mean that the program
reacts rapidly enough to perceive all the external events in a suitable order and
produces the output reactions before reacting to a new input event set. Embed-
ded controllers can be abstracted in this way. Some of the prominent languages
of the family include Esterel, Lustre, Signal etc. These languages are also be-
ing used widely in industry. Significant advantages of the family of synchronous

? Current address:School of Computer Science, Carnegie Mellon University, Pitts-
burgh,PA 15217, USA, email: Sanjit.Seshia@cs.cmu.edu

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 983–1007, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

984 S.A. Seshia et al.

languages include the availability of idealized primitives for concurrency, com-
munication and preemption, a clean rigorous semantics, a powerful programming
environment with the capability of formal verification. The advantages of these
languages are nicely paraphrased by Gerard Berry, the inventor of Esterel, as
follows: What you prove is what you execute.

Statecharts is a visual formalism which can be seen as a generalization of the
conventional finite automata to include features such as hierarchy, orthogonality
and broadcast communication between system components. Being a formalism
rather than a language, there is no unique semantics in the various implemen-
tations and further Statechart specifications can be nondeterministic. For these
reasons, even though there are powerful programming environments for Stat-
echarts such as Statemate1 (which includes simulators), environments lack
formal verification tools.

Textual and graphical formalisms have their own intrinsic merits and demer-
its. For instance consider the following reactive system design:

Consider the specification of control flow (switching of tasks) among var-
ious computing tasks and interrupt service tasks in a control software.
The computing tasks switch from one to another in cyclic fashion and
are shown as substates of compute proc. The interrupt service tasks
are entered as a result of the occurrence of interrupt events. The his-
tory notation has been used to indicate that on return from interrupt
tasks, the system returns to last executing compute task (except when
event 100 ms occurs, the control returns to compute task hpt). The
event wdt int occurs on system failure and it can be verified that when
wdt isr is entered, the system will toggle between states wdt isr and
nmi isr, which is the intended behavior.

Such systems can be specified using graphical formalisms easily. The statechart
for the above system is shown in Figure 1. Arguing the formal correctness from
such descriptions, however, is not easy. Our work is concerned with methods that
will combine advantages of using graphical formalisms for the design of reactive
systems with that of using formal verification tools in textual formalisms.

In this paper, we study a method of translating Statechart formalisms into
Esterel with the idea that the powerful verification tools and code optimiza-
tion tools of Esterel can be applied for Statechart programs. Our aim has
been to provide a clean formally verifiable code for Statechart programs rather
than yet another attempt to define the semantics of Statecharts. For this reason,
we stick to using the Statemate semantics (refer [7]), which is an industrial
strength version of Statecharts. It must be noted that Esterel is deterministic
and hence, our study will confine to the deterministic class of Statecharts. How-
ever, it may be noted that the translation procedure will detect the underlying
nondeterminism if any.

We discuss algorithms of translation and discuss the implementations and
also compare our study with respect to other similar translations of Statecharts.
1 Statemate is a registered trademark of I-Logix Inc.

A Translation of Statecharts to Esterel 985

H

H

compute_proc

control_proc

hpt

nt sc dt1

dt2

rti_isr nmi_isr

net_isr wdt_isr

e_nmi

rti_int

e_hpt/s_dt1

s_dt1/e_dt1

e_dt1/s_dt2

s_dt2/e_dt2e_dt2

net_int/e_net_int

e_net_int

wdt_int

wdt_int
wdt_int

not_100ms

100ms

s_nt/e_nt

e_nt

nmi

Root

Fig. 1. Example of Switching Interrupts

The main advantage of our translation is that the code generated is verifiable
and also, Esterel optimizers can used for efficient code generation. We are
currently in the process of evaluating the quality of code generated vis-a-vis
other Statechart code generators.

The rest of the paper is organized as follows: Section 2 briefly introduces
Statecharts, Esterel and the Statemate semantics. In section 3, we discuss
how we abstract out the essential details of the Statechart and the core ideas in
the translation process, along with illustrative examples. Section 4 sums up the
work along with comparisons to other works.

2 Background

2.1 Statecharts

In this section, we present a brief overview of Statecharts (see [6] for complete
details). Statechart shown in Figure 2 (derived from the example in [6]) is used
for illustrative purposes.

Components of a Statechart:
States: These are of three types: basic states, and states and or states. Basic

States are those states which do not contain any other state, e.g. lap is a basic
state.

An Or-state is a compound state containing two or more other states. To
be in a Or-state is to be in one of its component states. In this paper, we will

986 S.A. Seshia et al.

zero

reg.

lap

on

off

H*

stopwatch

watch

regular

alarm

a

a

b
d (in off)

dd
(in on) b b

nonzero

mode state

 a

Fig. 2. Statechart of stopwatch
within a wristwatch - with deep
history

 watch

stopwatch alarm regular

 zero non-zero

 mode state

 reg lap on off

Fig. 3. AND-OR tree represen-
tation of the Statechart of wrist-
watch

use Or-State synonymously with XOR-state, i.e. we can be in only one of the
component states at a given time. An example of an Or-state in Figure 2 is
stopwatch.

An And-state is also a compound state and staying in an And-state implies
staying in each one of its substates. These are provided to model concurrency.
The substates of an And-state may contain transitions which may be executed
simultaneously. nonzero shown in Figure 2 is an And-state.
Transitions: A Transition in the Statechart is a five-tuple (source, target,
event, action, condition). The arrow on the Statechart goes from source to
target and is labelled as e[C]/a, meaning that event e triggered the transition
when condition C was valid and action a was carried out when the transition
was taken. In general, a could be a list of actions to be taken.
History and Defaults: Statecharts incorporates the idea of a history state in
a OR-State. The history state keeps track of the substate most recently visited.
This is denoted by H in a Or-state, as in the or-state stopwatch in Figure 2. A
default state, marked by a shaded circle, is a substate of an or-state such that if
a transition is made to the or-state and no other condition (e.g. enter-by-history
) is specified, then that substate must be entered by default. e.g. regular is the
default substate for the watch. In Figure 2, we have a deep-history state, which
means that a transition to that state implies being in the maximal most recent
set of basic substates. This can be represented by history states in each one of
the Or-substates.

2.2 Statemate

The informal semantics of the Statemate version of Statecharts is provided
through rules describing the semantics of a step. The main rules are listed below.
For detailed discussions, the reader is referred to [7].

A Translation of Statecharts to Esterel 987

1. Reactions to external/internal events and changes that occur in a step can
be sensed only after completion of the step.

2. Events are “live” for the duration of the step following the one in which they
occur only.

3. Calculations in a step are based on the situation at the beginning of the step
4. If two transitions are in conflict, then priority is given to that transition

whose scope is higher in the hierarchy. The scope as defined in [7] is: The
scope of a transition tr is the lowest Or-state in the hierarchy of states that is
a proper common ancestor of all sources or targets of tr, including nonbasic
states that are explicit sources or targets of transition arrows appearing in
tr.

5. Each step follows the Basic Step Algorithm as described in [7].

2.3 Esterel

The basic object of Esterel without value passing (referred to as Pure Es-
terel) is the signal. Signals are used for communication with the environment
as well as for internal communication.

The programming unit is the module. A module has an interface that defines
its input and output signals and a body that is an executable statement:

module M:
input I1, I2;
output 01, 02;
input relations
statement

end module

Input relations can be used to restrict input events and a typical exclusion rela-
tion is declared as

relation I1 # I2;

Such a relation states that input events cannot contain I1 and I2 together. That
is, it is an assertion on the behavior of the asynchronous environment.

At execution time, a module is activated by repeatedly giving it an input
event consisting of a possibly empty set of input signals assumed to be present
and satisfying the input relations. The module reacts by executing its body and
outputs the emitted output signals. We assume that the reaction is instantaneous
or perfectly synchronous in the sense that the outputs are produced in no time.
Hence, all necessary computations are also done in no time. In Pure Esterel
these computations are either signal emissions or control transmissions between
statements; in full Esterel they can be value computations and variable up-
dates as well. The only statements that consume time are the ones explicitly
requested to do so. The reaction is also required to be deterministic: for any
state of the program and any input event, there is exactly one possible output
event. In perfectly synchronous languages, a reaction is also called an instant.
There is one predefined signal, the tick , which represents the activation clock of
the reactive program.

988 S.A. Seshia et al.

Statements: Esterel has two kinds of statements: the kernel statements, and
the derived statements (those that can be expanded by macro-expansions) to
make the language user-friendly. The list of kernel statements is:

nothing

halt

emit S

stat1; stat2

loop stat end

present S then stat1 else stat2 end

do stat watching S

stat1 || stat2

trap T in stat end

exit T

signal S in stat end

Kernel statements are imperative in nature, and most of them are classical in
appearance. The trap-exit constructs form an exception mechanism fully com-
patible with parallelism. Traps are lexically scoped. The local signal declaration
“signal in stat end” declares a lexically scoped signal S that can be used for
internal broadcast communication within stat. The then and else parts are
optional in a present statement. If omitted, they are supposed to be nothing.
Informal semantics of the kernel constructs are given in Appendix C.

3 The Translation

A Statechart basically denotes a network of automata with hierarchy and other
properties. The crux of the translation lies in

(A) Extracting the hierarchy of states and transitions,
(B) Resolving the conflict in the transitions as per the Statemate semantics,
(C) Generating the code corresponding to the transitions between states,
(D) Generating code that models system state between transitions, and,
(E) Generating code that supports communication via events and actions.

In the following, we shall highlight the underlying issues of representation,
resolution of conflicts and code generation. Note that we refer to signals in the
Statechart as actions or events , while those in Esterel are referred to simply
as signals . We first present the underlying ideas and the full code generation
algorithm is presented at the end.

3.1 AND-OR Tree Representation of Statecharts

The Statechart can be represented as an AND-OR tree: being in an AND-node
meaning that the system is in each of its child nodes, while being in an OR-node
means that we are in exactly one of its child nodes. Such a representation allows
us to express the hierarchy of states of the Statecharts in a convenient manner

A Translation of Statecharts to Esterel 989

to trace the path of arbitrary transitions. This also allows us to resolve conflicts
between enabled transitions, by calculating the scope(refer to section 2.2).

For purposes of code generation, we actually use an annotated representation
of AND-OR tree described in the following section. An AND-OR tree represen-
tation of the Statechart of Figure 2 is shown in Figure 3.

Annotated AND-OR Tree Representation: The annotated AND-OR tree
keeps track of information about the Statechart pertinent for the translation,
such as (i) the states and their types, (ii) hierarchy of States, and (iii) Transitions
between states, which includes Entry and Exit points for each transition & Inner
states that need to be hidden (signals suppressed) during a transition that exits
a state.
Each node A of the AND-OR tree is represented as a seven-tuple2:

(Name, Type, Tentry, Texit, Tloop, Tdefault, Thistory), where,

Name: Name of the state, viz. A.
Type: AND, OR or BASIC.
Tentry: The set of all transitions that enter A.
Texit: The set of all transitions that exit A.
Tloop: The set of all transitions that exit one of A’s immediate child states and

enters another(possibly same) child state.
Tdefault: The single transition to an immediate child state from A.
Thistory: The set of transitions to the history state of A.

For translating Statecharts, we need to keep track of the Entry and Exit Point
Information so that the transitions including the inter-level transitions can be
enabled in the translated Esterel code preserving the Statemate semantics.
The actual information we need to keep track of will be clear by considering the
states between which the transition takes place. Transitions in Statecharts can
be broadly classified as:

T1: Between child states of the same parent.
T2: From a parent state to its (not necessarily immediate) child state.
T3: From a child state to its (not necessarily immediate) parent state.
T4: Any transition that is not of type T1, T2 or T3.

Note that all of these transitions may not occur in a given Statechart. In par-
ticular, types T2 and T3 may not occur, but the way they are translated forms
part of the translation for type T4. The book keeping of the above classes of
transitions is achieved through the Node-Labelling Algorithm by keeping the
appropriate entry and exit information in each node of the AND-OR tree.
Node-Labelling Algorithm: Assuming levels of the nodes in the tree have
already been computed (with root node having level 0, and increasing level for
its child nodes), for each transition in the set Tr of transitions, the algorithm

2 We shall use node synonymously with state and vice-versa.

990 S.A. Seshia et al.

traverses the path from source node n1 to target node n2, labelling these two
nodes as well as intermediate nodes with: (i) name of the transition, (ii) type of
the transition, viz. T1, T2, T3 or T4 and (iii) the fact whether the transition is
entering that node or exiting it. This information is used to generate code in the
translation.

S

A
C D

B

E F

t1:a/b

t2:x/a

t3:y/b

t4:a/c

Fig. 4. Example Statechart

S

B A

E F C D

t3:loop:T4

t3:exit:T4,
t4:entry:T1

t3:entry:T4,
t4:exit:T1

t1:exit:T1,
t2:entry:T1

t1:entry:T1,
t2:exit:T1,
t3:entry:T4

Fig. 5. Corresponding Node-
labelled AND-OR tree

3.2 Labelling for Transition Conflict Resolution

As per Statemate semantics, two transitions are in conflict if they exit a com-
mon state A. Further, conflict resolution is based on the following: Transition t1
has priority over transition t2 if the lowest3 Or-state exited by t1 is lower than
the lowest Or-state exited by t2.

Given this, if trigger events for t1 and t2 occur simultaneously then, we must
ensure that t2 is not taken along with its actions. This is done by a signal hide A.
On taking t1, hide A will be emitted. Therefore, before t2 is taken, a check must
be made for the presence of signal hide A.

This is indicated in the AND-OR tree by traversing the tree top-down, main-
taining a list of “hide-signals” that we need to label the nodes with. At a node,
which has at least one transition that exits it, and which is either the source of
that transition, or the last state exited by it, we label all of its children with
hide A. This is to ensure that while translating, a statement to check for the
presence of hide A is executed before any transition is taken. This will per-
form the job of hiding internal signals. The algorithm to implement hide signal
labeling is omitted here for brevity.

3.3 Code-Generation

The Code-Generation is done in a top down manner traversing the AND-OR
tree. In short, the process is as follows : (1) Declare all necessary signals, (2)
generate code for states and transitions between states, (3) generate code to

3 Lowest means closest to the root node.

A Translation of Statecharts to Esterel 991

]

 exit TA’
 end present;
] end loop
....

] end module
end trap

S

A B

C D

a/b

module A :
....

trap TA’ in [
loop [await immediate goC;

 [[C]]
 trap TC in [

 ||
 await immedaite a; await STEP; emit b; emit sig_C_to_A; exit TC
 end trap]

]

 present sig_C_to_A then

 emit sig_A_to_S;

/* module A exits and returns to S */

module S :
....
loop [await immediate goA;
 trap TA in [
 [[A]]; exit TA;
 end trap
 present sig_A_to_S then
 emit goB;
 end present
] end loop
||
loop [await immedaite goB;
 trap TB in [
 [[B]]
 end trap
] end loop

Fig. 6. Translation of a transition of type T4

do communication within the Statechart, (4) generate code to deal with special
constructs such as history substates.

Declarations: Information about the following kinds of signals is stored in the
annotated AND-OR tree and these are declared at each node while generating
code for the module corresponding to that node.

1. External Input signals.
2. Internal Input events generated during transitions out of substates of parent

node A.
3. Internal Output events(actions) generated during transitions out of substates

of parent node A.
4. If A is a substate of an Or-state with history, then a valued signal new his-

tory A is used so that the history can be changed appropriately whenever
transition to a substate Ai of A takes place.

5. Dummy signals for T2 or T4 transitions that enter A: In this case signals
of the form sig BtoA or sig AtoB would be needed, where B is either an
immediate parent or an immediate child of A. This list is built up for each
such node A, during the Node -Labelling Algorithm. These signals are used
to build a chain of signals that trigger transitions between immediate parent-
child states, and the whole chain generates the entire transition.

6. Dummy signals for T3 or T4 transitions that exit A. Similar to 5 above.

992 S.A. Seshia et al.

7. Valued History signals for all Or-sub-states having history; for each such
OR-state these store the value of the most recent substate. While building
the AND-OR tree we can maintain a list of Or-states which have history.

8. Signals that indicate transition to a history4 substate of a substate of A, or
if A is an Or-state, to indicate transition to history substate of A.

9. Characteristic signals (in, enter, exit) for each substate of A. To generate this
list, traverse the AND-OR tree bottom-up (postorder) and at each node, add
to a list of child nodes. Then while generating code for node A, declare all
characteristic signals for each of its child nodes as listed.

We have a new module only for each OR-node, therefore, we need not keep
a list of all nine types of signals with an AND-node or BASIC-node unless it is
the ROOT node.

The STEP Signal: In the Esterel code generated, each step occurs on
receipt of an external signal called STEP . This signal is needed to provide a
tick on which transitions can be made even when there are no input signals
from the environment (i.e. when all triggering events are internally generated).
Use of STEP is necessary to implement the super-step semantics of Statemate,
wherein several steps are executed starting with some initial triggering events, till
the system reaches a set of stable states (i.e., states with no enabled transitions
out of them).

Transitions: Consider code generation for the translation for a transition t of
type T , with source state A and target state B.

In brief, the translation involves the following : (1) Generate code to await
the occurrence of the triggering event, and, (2) on occurrence of the STEP (as
in Statemate semantics), if the triggering condition is true and no transition
pre-empts t, emit : (a) a signal to activate the next state (called a “go” signal),
(b) a signal to activate a chain of transitions (for types T2 through T4), (c)
signals to exit the current state, i.e., to terminate emission of signals that depict
the current state as active.

Figure 6 illustrates translations with respect to T4 transition.
The complete procedure translate-transition is given in Appendix A. The
parameter curr node is the node for which we are generating code.
Note: For lack of space, we give only snippets of the most essential parts of the
Esterel code. The full code generated is well formed and syntactically correct.

Code-Generation Algorithm: In the following, we describe the basic-code
generation algorithm. Code to be emitted for immediate states like history and
special actions are omitted for brevity.
Notation: In the code-generation algorithms, algorithm details are in Roman
font while the code is boxed in Typewriter font.
4 We have implemented deep-history as a sequence of transitions between history

states. Such signals are used to make ε transitions between history states.

A Translation of Statecharts to Esterel 993

Algorithm 1 Basic Code-Generation Algorithm: The main algorithmic steps
are sketched below.

1. Traverse the AND-OR tree top-down. (in preorder)
2. For each node A do

• If A is an OR-node:

(a) Begin a new module, and declare all signals that occur A’s signal list,
or in the signal list of child nodes of A, till the first child Or-node is
encountered.

(b) Generate code for each block representing the substate of A. Let A1,
A2, ..., An be the immediate child nodes of node A. Let ei1, ei2, ... eim

be the external or internal events on which transitions are made out of
the Ai. Let the corresponding actions be acti1 to actim. Further, let the
conditions under which the transitions are to be taken be Ci1 to Cim.
Let the list of hide signals for the nodes Ai, ∀ i be hide1 to hidet. STEP
is a signal that indicates that the next step must be performed. It is an
external signal. Steps of the translation are described below:
Step 1. Emit preamble code. If A is a substate of an OR-state B with
history, then appropriate newhist signals are emitted to update history.
Code to be emitted from this step is given below:

emit enter A;

[trap T ′
A in [

sustain in A;

‖ [await tick; emit newhistB(A);]
‖ [signal goA1, goA2, ..., goAn in [
· · · % to be completed in other steps

Step 2. Emit code to check for T2 and T4 transitions, or for transitions
to the history substate of A. If none of these are true then default state
is entered. Code from this step is given below:

present

case sig AtoAj do

emit goAj % This is repeated for each sig AtoAj%

case enterhist A do

[if histA = 1 then

emit goA1 % Check for each i%
elseif histA = 2 then

emit goA2

else emit goAk % Ak is the default substate
for A%

end if

end present;

Step 3. For each i, emit code to handle transitions out of Ai and also
the refinement of Ai. The code for each of the i are composed in parallel.
The respective codes to be emitted are given in the substeps below:

994 S.A. Seshia et al.

Substep 1. Preamble code for Ai.

[loop [
await immediate goAi;

trap TAi in

· · · % Subsequent codes will be completed by other
steps %

Substep 2. Emit code corresponding to the refinement of Ai. We
indicate the refinement of Ai by << Ai >>. If Ai is an AND-node or
BASIC-node then this is the block for Ai. If Ai is an Or-node, then
this is a “run Ai” statement. In this case, add it to a queue5 of Or-
nodes Qnodes, so that we emit code for it and its child nodes later. When
the node is visited during the preorder tree traversal, the entire subtree
under that node Ai is skipped to be processed later.

[<< Ai >>; exit TAi;

‖ · · · % subsequent codes will be completed by other steps %

Substep 3. Emit code for each transition triggered by eij , j = 1..m,
and compose in parallel with the above code. i.e., 6 ∀ ti ∈ T i

exit,

call translate-transition(ti,TYPE of ti,Ai);

end trap % TAi

Substep 4. Code emitted in case there are transitions of type T3 or
T4. Thus, for all transitions t of type T3 or T4 which exit state Ai we
would have:

call exit-code-trans(t,TYPE of t,Ai);

Substep 5. Postamble code for the substate Ai is given below:

] end loop

]

Step 4. The postamble code to be emitted is given below:

end signal

]
end trap % T ′

A

]
end module

• If A is an AND-node:
(a) Generate code to emit enter and in signals for A, or for updating history,

as in preamble code above.
(b) Generate code for each one of A’s child nodes, Ai, and compose these in

parallel.
5 Note that queue is implicit in the underlying tree traversal algorithm.
6 For two transitions out of the same state with the same priority, we assume some

priority order known in advance and instead of composing code for these transitions
in parallel, we use the await case .. end await construct of Esterel.

A Translation of Statecharts to Esterel 995

(c) Generate code for each transition that quits a child node of A and com-
pose each in parallel with that in item 2 above. The translation for the
individual transitions is exactly as for an Or-node. There are no looping
transitions of type T4 for an AND-node.

• If A is an BASIC-node:
Generate code to emit enter and in signals for A, or for updating history
of its parent state, just as was done for the Or-state. Also generate code to
begin, await a return signal from or end an activity.

3. Generate code for each of the Or-nodes in the queue Qnodes till no more
Or-nodes remain in the queue.

Note: Algorithm 1 preserves the priority structure of transitions based on scope
by appropriately nesting the traps and using the Esterel semantics of nesting
of traps.

Generation of STEP Signal: In the above Algorithm 1, each step occurs on
receipt of an artificially created external signal called STEP .

Clearly, this STEP signal cannot be generated internally, as it will not gen-
erate a tick then. Further, STEP must be given to the state machine (system)
as long as there are enabled transitions (enabled on internally generated signals).
In our translation, this indication is obtained from the enter and exit signals
emitted.

We define a new signal “give step” which is emitted whenever an enter or
exit signal is emitted. Thus, whenever give step is emitted, a STEP signal must
be emitted. Additionally, STEP must be emitted on occurrence of an external
input. The state machine generated by the Esterel compiler must interface
with the environment through a driver routine. The driver routine executes the
state machine whenever there is an input from the external environment. Thus,
our problem is to execute the state machine under certain conditions(namely
when give step is emitted) even when there is no external input. The trick here
(as in [11]) is to set a bit for every occurrence of give step that is checked by the
driver routine; the bit indicates that the driver routine must generate a tick (and
supply a STEP)7. Thus, due to the presence of “await STEP” in the translation
for transitions, although the actions are “activated” in the current step, they
take effect only in the next step. This is in accordance with the Statemate
semantics.

Our translation faithfully represents all behaviors of the Statemate Stat-
echarts, in both the Step and Superstep time models. In our translation, the
STEP of Statecharts is mapped to the tick of Esterel. Time instants are indi-
cated by a separate TIME signal. In the Superstep time model, the STEP and
TIME signals are distinct, while in the Step model they always occur together.
As noted in [7], a Statechart using the Superstep time model can have possible
infinite loops in the same TIME instant. This can also happen in our Esterel
translation, and cannot be detected using the present Esterel tools.
7 During simulation with the standard Esterel tool xes, we supply STEP as an

external input in much the same way as a tick is supplied.

996 S.A. Seshia et al.

ROOT

t1: a/b
A B

C

t2: b/ct3: c/a

Fig. 7. Statechart with cycle

Let us consider the Statechart shown in fig. 7. Following are the steps exe-
cuted when the event a occurs.

– STEP 1: Transition t1 is enabled because of occurrence of a and the system
goes from the configuration {R,A} to {R,B} and the event b is generated in
the system.

– STEP 2: In this step since event b is available, transition t2 is enabled and
the system leaves the configuration {R,B} and goes to {R,C} and the event
c is generated.

– STEP 3: In this step since event c is available, transition t3 is enabled

In the asynchronous time model [7], all these steps will constitute one superstep
and be executed in one time instant. Each of these steps is executed when the
external signal STEP is given.

It is possible to detect such loops, however, we shall not discuss it here.

3.4 History

As noted in [7], history states can occur only within Or-states. History is imple-
mented using valued history signals for each Or-state having history. The value
0 corresponds to the default state, i.e. no history. The emission of the history
signal for a state S, histS is done only by the root module ROOT, of the entire
Statechart. When a new state is entered within an Or-state S, the module cor-
responding to that state emits a newhistS signal which is captured by ROOT
which in turn updates histS. The history itself is maintained as a integer valued
signal8, the integer indicating which substate of the Or-state is the most recent
one. Below, we show the code part of ROOT which updates the history values.
module ROOT :
· · ·
var x in
[% the below block exists for each Or-state with history

8 However, if we use a shared variable for keeping track of the history, there will be
no need to sustain the integer valued signal used for that purpose.

A Translation of Statecharts to Esterel 997

every immediate newhistS
x := ?newhistS ;
sustain histS(x) ;

end
‖ · · ·
] · · ·
end module

3.5 Illustrative Examples

Here, we shall discuss two examples developed and verified using the above
system.

Example 1. Figure 8 shows an example of the Priority Inversion problem arising
due to nondeterministic behavior of the Statechart. Processes P1, P2 and P3
have priorities 1,2 and 3 respectively, and P1 and P3 share a common resource,
access through which is controlled by a mutex.

It can be shown (by automata reduction) that the configuration (Root, Sys,
P1blocked, P2run, P3premp) is a case of priority inversion and the system is
deadlocked because of the following sequence : P3 enters critical region, P1 blocks
on mutex, P2 pre-empts P3 with P1 and P3 now blocked, and thus priority of P1
and P2 has been inverted. It has been verified that this will always lead to the
configuration (Root,Error). To overcome deadlock, we can add one transition
between the states Error and Sys, which will again bring the system to default
configuration and normal operation can resume.

A sample snippet of the Esterel code generated by our system is given in
the Appendix. Note that the actual code generator slightly deviates from the
abstract algorithms as it uses some implementation optimizations.

Example 2. This is the example of switching interrupts described in section 1
depicted by the Statechart shown in Figure 1.

Our translation described earlier has been applied to the Statechart shown in
Figure 1 and the Esterel code obtained, tested, simulated and verified (using
the Auto/Autograph tools). Some of specific properties that have been verified
are: Event wdt int occurs on system failure and when wdt isr is entered, the
system will toggle between states wdt isr and nmi isr, which is the intended
behaviour. The actual code is not given for brevity.

4 Conclusions and Related Work

In this paper, we have proposed a translation from Statecharts to Esterel, and
have applied this translation to successfully model and analyze some systems
that might occur in real world problems. The translation is syntax-directed so
that the translation of the entire Statecharts specification can be put together
from the translation of its individual components. We have only sketched some
of the algorithms for lack of space.

998 S.A. Seshia et al.

Fig. 8. Priority Inversion Example

4.1 Related Work

An early attempt towards a graphical formalism avoiding the anomalies of Stat-
echarts was the definition of Argos (see [8]). Very recently efforts have also been
reported in combining Argos and the synchronous languages Estereldescribed
in [5]. Another effort of translating Statemate Statecharts to Signal has been
reported in [3] where the aim has been to use Signal (another synchronous
language) and its environment for formal verification purposes. Signal and Es-
terel are quite different considered from the point of view of verification basis
and flexibility. Our approach provides the possibility of using various automata-
based/temporal logic based tools for verification in a fairly natural way.

A recent approach is that of Mikk et al.[9], in which the authors discuss
the translation of Statecharts into another graphical formalism called Extended
Hierarchical Automata(EHA). In this formulation, the inter-level transitions
are eliminated, by extending the labels to include source restriction and tar-
get determinator sets. Our translation does something similar to the one that is
resorted to for EHAs, in that we use dummy signals to make interlevel transi-
tions, one for each level transcended. It must be noted that the translation in
[9] is from one graphical language to another, ours is from a graphical language
to a textual language. In a subsequent work [10], which is of a similar flavour
as ours, Mikk et al. have translated EHAs into Promela for use with the model
checker SPIN. This enables them to do LTL model checking on Statecharts.
With our translation, we are able to use Esterel tools such as FC2Tools to do
equivalence checking, checking for deadlock, livelock and divergent states; and

A Translation of Statecharts to Esterel 999

Hurricane, which does verification of LTL safety properties. We also support
special Statechart features such as timing primitives and history.

Another approach taken with the spirit of providing an integration of Argos
and Esterel has been the work on SyncCharts reported in [1] and [2]. SyncCha-
rts have a precise semantics, and is translatable to Esterel. It does not allow
for inter-level transitions, and history, which are very useful features of State-
charts, and which are part of Statemate Statecharts (which we have worked
with). SyncCharts however has explicit syntactic constructs for preemption such
as suspension, weak abortion, and strong abortion, much like Esterel. The
semantics of these constructs is the same as that of corresponding constructs
in Esterel. Unlike such an approach of having another language, our aim has
been to translate the existing Statecharts that is pragmatically very attractive
and used widely, into an existing framework that permits formal verification.
We have illustrated how the behaviours of a large class of Statecharts can be
captured through the use of the unifying threads that run through the seman-
tics of synchronous languages, both textual and graphical. Also, our aim has not
been to define yet another semantics of Statecharts. Our goal has been to show
how a class of Statecharts which have constructs like inter-level transitions and
global communication of events, and which is used in the industrial strength tool
Statemate, can be translated to a textual synchronous language and formally
verified.

4.2 Summary of Work

We have translated Statecharts to Esterel version 5.10 described in [4] and a
prototype system is in use. We have been using the tools of Esterel verification
such as FC2tools based on bisimulation and Hurricane (from INRIA/CMA); we
are also working on integrating the system with a tool being developed here
by Paritosh Pandya on generating synchronous observers from DC specification
of properties. A spectrum of industrial scale examples have been verified using
Esterel and our translation will help combine ease of specification with this
advantage of verification. The system implemented has shown that it is possible
to integrate the advantages of Statecharts and Esterel in the design of reactive
systems. While it is true that Statemate Statecharts and Esterel have dif-
ferent semantics, our translation works for a subset of deterministic Statecharts,
and using a subset of Esterel constructs in a limited manner. We have thus
maintained Statemate semantics while restricting the class of Statecharts we
translate. The current translation also considers only simple events and actions;
work is in progress to extend this to more general events and actions.

To sum up, this work is interesting from many standpoints. Considered from
view of Statecharts, we have found it useful as a way to incorporate formal
verification and as a diagnostic tool for detecting nondeterminism. From the
point of view of Esterel, it provides an integration of textual and graphical
formalisms. From a practical perspective, it is possible to use heterogeneous
systems such as Statecharts and Esterel together in the development of reactive
systems and the use of the industrial strength Statemate shows this work has

1000 S.A. Seshia et al.

potential worth in industrial system verification. There has been a large effort
in integrating synchronous languages such as Esterel, Lustre and Signal. This
work has attempted to bring Statecharts in a restricted way under this umbrella.
The prototype has been built and found to be effective in the design of small-
scale reactive systems. Experiments are going on in the development of large
complex systems using the system.

Acknowledgments

We thank the anonymous referees for their valuable suggestions and comments.
The work was initiated while Sanjit Seshia was with I.I.T., Bombay working
on a summer project with R.K. Shyamasundar at TIFR, Bombay. He thanks
I.I.T. Bombay, TIFR and CMU for their support. R.K. Shyamasundar thanks
IFCPAR, New Delhi for the partial support under the project 2202-1.

References

[1] André, C. SyncCharts: A Visual Representation of Reactive Behaviors. Tech.
Rep. RR 95-52, I3S, Sophia-Antipolis, France, 1995.

[2] André, C. Representation and Analysis of Reactive Behaviors: A Synchronous
Approach. Tech. Rep. 96-28, Université de Nice, Sophia-Antipolis, France, 1996.

[3] Beauvais, J.-R. et al. A Translation of Statecharts to Signal/DC+. Tech. rep.,
IRISA, 1997.

[4] Berry, G. A Quick Guide to Esterel Version 5.10, release 1.0. Tech. rep., Ecole
des Mines and INRIA, February 1997.

[5] Berry, G., Halbwachs, N., and Maraninchi, F. Unpublished note on Esterel
and Argos. 1995.

[6] Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8 (1987), 231–274.

[7] Harel, D., and Naamad, A. The STATEMATE Semantics of StateCharts. ACM
Transactions on Software Engineering and Methodology 5, 4 (October 1996).

[8] LeGuernic, P. et al. Programming Real-time applications with Signal. Pro-
ceedings of the IEEE 79, 9 (September 1991), 1321–1336.

[9] Mikk, E., Lakhnech, Y., and Siegel, M. Hierarchical automata as model for
statecharts. In LNCS (Dec. 1997), 1345, pp. 181–197.

[10] Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G. Implementing Stat-
echarts in Promela/SPIN. In Proc. of the 2nd IEEE Workshop on Industrial-
Strength Formal Specification Techniques (1999), IEEE Computer Society.

[11] Puchol, C. et al. A Formal Approach to Reactive Systems Software: A Telecom-
munications Application in Esterel. In Proc. of the Workshop on Industrial
Strength Formal Specification Techniques (April 1995).

A Translation of Statecharts to Esterel 1001

Appendix A: Code Generation for Transitions

This procedure gives the translation for a transition t of type T , with source
state A and target state B. curr node is the node which we are generating code
for. As mentioned before, the algorithm details are in Roman font while the
emitted code is boxed and in typewriter font.

procedure translate-transition
(t,T,curr node)

begin
A := source(t); B := target(t);
et := event(t); at := action(t);
Ct := condition(t);

/* Let hideS be signal corresponding to transition t which hides other transitions
of scope less than that of t. let t be hidden by signals hide1, hide2, ..., hiden.*/

if (A = curr node) then
begin
EMIT :-

loop
await (immediate) e_t;
(await STEP;)
if C_t then [

present hide_1 else
present hide_2 else
...
present hide_n else
emit hideS;
emit a_t; emit exit_A;

if (T = T1) then
begin

EMIT :-
emit goB; exit T_A;

end
if (T = T2 OR T = T4) then
begin

/* Let S1, S2, ..., Sn be intermediate states between A and B. */
EMIT :-
emit sig_AtoS_1;
exit T_A; % exit trap

end
EMIT :-

1002 S.A. Seshia et al.

/* Complete all present statements */
end present

...
end present

] end if]
end loop

end /* if A==curr node */
else /* if A 6= curr node, i.e., t of type T2 or T4 */
begin

EMIT :-
/* Let A1 and A2 be the two immediate child nodes of A */
present sig_AtoA_1 then
emit sig_A_1toA_2;

end present;

end
end procedure

Note: Above, we have assumed that the condition is a boolean expression, as in
Esterel syntax. If the condition is the test of presence of a signal it must be
replaced by a

present SIG then ...
else ...

end present

translation. If the condition involves testing values of shared valued signals,
which could possibly change value “simultaneously”, then we need to ensure
that the value tested is the one at the time of occurrence of the triggering event.
This code is omitted for brevity.

Further, for transitions of type T3 and T4, on exiting a state, code must be
emitted for continuing the chain of transitions. This code generates signals that
trigger transitions in child states. The code generation routine for this is referred
to in Algorithm 1 as procedure exit-code-trans (trans, Type-of-transi-
tion, States).
We omit the detailed description of this routine in this paper.

A Translation of Statecharts to Esterel 1003

Appendix B: Esterel Code : Priority Inversion Problem

Below we attach code snippets for the states P1 and P1ready.

module P1ready:
% Signal Declarations
output EnterP1ready, InP1ready,
ExitP1ready;

% Program Body --------------
emit EnterP1ready;
do sustain InP1ready watching
ExitP1ready;
end module
%-----------------------------
module P1:

% Declarations deleted for brevity

signal goP1ready, goP1incrit,
goP1blocked, goP1, goP2ready,
goP2run, goP2prempt, goP2,
goP3ready, goP3incrit, goP3prempt,
goP3,goSys in [

% Program Body --------------
emit goP1ready;

emit EnterP1;
do sustain InP1 watching ExitP1;
||
loop
await immediate goP1ready;
trap outP1ready in

run P1ready;
||
loop
await % Exit
case immediate [a] do

present InP3incrit or InP3prempt
then [
% Testing condition
present HideSys then
await STEP
else [
await STEP;emit ExitP1ready;

1004 S.A. Seshia et al.

emit goP1blocked;
exit outP1ready;]
end]

else [
present HideSys then await STEP
else [
await STEP; emit ExitP1ready;
emit goP1incrit;
exit outP1ready]

end % end present
]

end % end present
end % end await

end % end loop
end % end trap
end % end loop
||
loop
await immediate goP1incrit;
trap outP1incrit in
run P1incrit;
||
loop
await % Exit
case immediate [ap] do
present HideSys then await STEP else [
await STEP; emit ExitP1incrit;
emit goP1ready; exit outP1incrit]

end % end present
end % end await

end % end loop
end % end trap
end % end loop
||
loop
await immediate goP1blocked;
trap outP1blocked in
run P1blocked;
||
loop
await % Exit
case immediate [cp] do
present HideSys then await STEP else [
await STEP; emit bq; emit ExitP1blocked;
emit goP1incrit; exit outP1blocked;]

A Translation of Statecharts to Esterel 1005

end % end present
end % end await

end % end loop
end % end trap
end % end loop
] end % end signal
end module

Appendix C: Intuitive Semantics of Esterel

At each instant, each interface or local signal is consistently seen as present or
absent by all statement, ensuring determinism. By default, signals are absent; a
signal is present if and only if it is an input signal emitted by the environment
or a signal internally broadcast by executing an emit statement.

To explain how control propagates, consider first examples using the simplest
derived statement that takes time: the waiting statement “await S”, whose ker-
nel expansion “do halt watching S” will be explained later. When it starts
executing, this statement simply retains the control up to the first future instant
where S is present. If such an instant exists, the await statement terminates
immediately; that is the control is released instantaneously; If no such instant
exists, then the await statements waits forever and never terminates. If two
await statements are put in sequence, as in “await S1; await S2”, one just
waits for S1 and S2 in sequence: control transmission by the sequencing operator
’;’ takes no time by itself. In the parallel construct
“await S1 || await S2”, both await statements are started simultaneously
right away when the parallel construct is started. The parallel statement ter-
minates exactly when its two branches are terminated, i.e. when the last of S1
and S2 occurs. Again, the “||” operator takes no time by itself.

Instantaneous control transmission appears everywhere. The nothing state-
ment is purely transparent: it terminates immediately when started. An “ emit
S ” statement is instantaneous: it broadcasts S and terminates right away, mak-
ing the emission of S transient. In “emit S1; emit S2”, the signals S1 and S2
are emitted simultaneously. In a signal-presence test such as “present S ...”,
the presence of S is tested for right away and the then or else branch is immedi-
ately started accordingly. In a “loop stat end” statement, the body stat starts
immediately when the loop statement starts, and whenever stat terminates it
is instantaneously restarted afresh (to avoid infinite instantaneous looping, the
body of a loop is required not to terminate instantaneously when started).

The watching and trap-exit statements deal with behavior preemption,
which is the most important feature of Esterel. In the watchdog statement “do
state watching S”, the statement stat is executed normally up to proper ter-
mination or up to future occurrence of the signal S, which is called the guard. If
stat terminates strictly before S occurs, so does the whole watching statement;
then the guard has no action. Otherwise, the occurrence of S provokes immediate

1006 S.A. Seshia et al.

preemption of the body stat and immediate termination of the whole watching
statement. Consider for example the statement

do
do

await I1; emit 01
watching I2;
emit 02

watching I3

If I1 occurs strictly before I2 and I3, then the internal await statement termi-
nates normally; 01 is emitted, the internal watching terminates since its body
terminates, 02 is emitted, and the external watching also terminates since its
body does. If I2 occurs before I1 or at the same time as it, but strictly be-
fore I3, then the internal watching preempts the await statement that should
otherwise terminate, 01 is not emitted, 02 is emitted, and the external watch-
ing instantaneously terminates. If I3 occurs before I1 and I2 or at the same
time as then, then the external watching preempts its body and terminates in-
stantaneously, no signal being emitted. Notice how nesting watching statements
provides for priorities.

Now the translation of “await S” as “do halt watching S” will be clear.
The semantics of halt is simple: it keeps the control forever and never terminates.
When S occurs, halt is preempted and the whole construct terminates. Note that
halt is the only kernel statement that takes time by itself.

The trap-exit construct is similar to an exception handling mechanism, but
with purely static scoping and concurrency handling. In trap T in stat end, the
body stat is run normally until it executes an exit T statement. Then execution
of stat is preempted and the whole construct terminates. The body of a trap
statement can contain parallel components; the trap is exited as soon as one
of the components executes an exit T statement, the other components being
preempted. However, exit preemption is weaker than watching preemption, in
the sense that concurrent components execute for a last time when exit occurs.
Consider for example the statement

trap T in
await I1; emit 01

||
await I2; exit T

end

If I1 occurs before I2, then 01 is emitted and one waits for I2 to terminate.
If I2 occurs before I1, then the first branch is preempted, the whole statement
terminates instantaneously, and 01 will never be emitted. If I1 and I2 occur
simultaneously, then both branches do execute and 01 is emitted. Preemption
occurs only after execution at the concerned instant: by exiting a trap, a state-
ment can preempt a concurrent statement, but it does leave it its “last wills”.
The rule for exiting from nested traps is simple:only the outermost trap matters,
the other ones being discarded. For example, in

A Translation of Statecharts to Esterel 1007

trap T1 in
trap T2 in

exit T1
||
exit T2

end;
emit 0

end

traps T1 and T2 are exited simultaneously, the internal trap T2 is discarded
and 0 is not emitted. Traps also provide a way of breaking loops, which would
otherwise never terminate as reflected by:

trap T in
loop ... exit T ... end

end

One can declare local variables by the statement

var X in stat end

Variables deeply differ from signals by the fact that they cannot be shared by
concurrent statements. Variables are updated by instantaneous assignments
“X:=exp” or by instantaneous side effect procedure calls “call P(...)”,
where a procedure P is an external host language piece of code that receives both
value and reference arguments.

	Introduction
	Background
	Statecharts
	 {sc Statemate}
	{sc Esterel}

	The Translation
	AND-OR Tree Representation of Statecharts
	Labelling for Transition Conflict Resolution
	Code-Generation
	 History
	Illustrative Examples

	Conclusions and Related Work
	Related Work
	Summary of Work

