
Verifying a Distributed Database Lookup

Manager Written in Erlang

Thomas Arts1 and Mads Dam2

1 Computer Science Laboratory, Ericsson Utvecklings AB,
Box 1505, 125 25 Älvsjö, Sweden,

thomas@cslab.ericsson.se,
http://www.ericsson.se/cslab/∼thomas/

2 Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden,
mfd@sics.se, http://www.sics.se/∼mfd/home.html

Abstract. We describe a case-study in which formal methods were used
to verify an important responsiveness property of a distributed database
system which is used heavily at Ericsson in a number of recent products.
One of the aims of the project was to verify the actual running code which
is written in the distributed functional language Erlang. In a joint project
between SICS and Ericsson we have over the past few years been devel-
oping a tableau-based verification tool for Erlang of considerable scope.
In particular, we are capable of addressing — on the level of running
program code — systems with unbounded behaviour along the many di-
mensions in which this happens in “real” programs, involving datatypes,
recursive control structures, error handling and recovery, initialisation,
and dynamic process creation. The database lookup manager consid-
ered here contains most of these features, giving rise to infinite state
behaviour which is not very adequately handled using model checking or
other approaches based purely on state space traversal. In the paper we
introduce the case study, our approach to formalisation and verification,
and discuss our experiences using the Erlang verification tool.

Industrial Applications, experience report
Keywords: Telecommunication; Proof Checker; Distributed Algorithms; Dis-

tributed Databases; Formal Verification

1 Introduction

Erlang [AVWW96, OSE98] is a functional programming language developed by
Ericsson, which is used extensively for writing robust distributed telecommunica-
tion applications. Central in many of these applications is a distributed database,
Mnesia [Mnesia], also written in Erlang. The Mnesia system is crucial to the ro-
bustness of almost all Erlang based product developed at Ericsson. It is, for
instance, responsible for error recovery, the prompt and safe handling of which
is essential in telecommunication applications. These features make the Mnesia
system a rewarding object of study when trying out new verification techniques.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 682–700, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Verifying a Distributed Database Lookup Manager Written in Erlang 683

The case study at hand concerns only a small part of the Mnesia system,
a protocol for the evaluation of a query which is distributed over several com-
puters in a network. The starting point for this case study was the Erlang code
implementing the distributed database. The author of this code knew that the
query lookup protocol was implemented in a tricky way and got interested in
supporting his implementation with a clear and verified description.

We extracted, from the real implementation, the code for the distributed
query evaluation protocol and added some code to provide a very simple sim-
ulated interface to parts of the system that were irrelevant for the problem at
hand. The result was an Erlang program that could be seen as a very precise,
and in some sense formal, description of the underlying algorithm. Isolation of
the code responsible for the lookup mechanism and analysing the intended be-
haviour of the code resulted, as a side effect, in a clear and patentable picture
of the underlying protocol [Nil99].

In Sect. 2 we present the distributed query evaluation in more detail. As
input the protocol receives a database query divided into subqueries. These
subqueries are distributed over the network in the form of processes on those
computers where the specific data for a subquery is stored. By sending messages
to the subquery processes, data is extracted from the database tables and sent
along the network. One process is responsible for initialising the lookup process
ring, and for collecting the resulting data. To avoid excessive delays and storage
consumption, query answers are collected in segments, managed by the lookup
manager. The task we set ourselves was to prove that the implementation pro-
vided a responsiveness property: that input queries are eventually being replied
to.

The query lookup manager implements initialisation and query lookup phases
in manners which are tightly interwoven. Both these phases are important for
correct behaviour. Moreover, the code is evidently designed to cater for tables
of arbitrary numbers and sizes, and for queries of arbitrary natures. Reflecting
this, our aim was to prove correctness uniformly in these parameters, i.e. without
fixing numbers and sizes of tables and queries in advance. This sort of problem is
outside the scope of model checkers, symbolic or otherwise, or other techniques
based purely on global state space traversal.

There are several reasons why we find this sort of verification exercise useful
and interesting.

– First of all it is clearly relevant to verify the actual code rather than some
abstraction of it, as this gives us more accurate and reliable information
about the way the system is going to behave when it is eventually executed1.

– Secondly, by analysing the code, and in particular, by doing so in a compo-
sitional manner, we produce verication information which is reusable as the
system grows. By contrast, most approximate analyses, such as ones based
on abstract interpretation (c.f. [Cri95]), tend to be global ones, not readily
reusable.

1 Absolute accuracy, of course, is unattainable



684 Thomas Arts and Mads Dam

– Thirdly, and most significantly, the Erlang code itself is in fact already quite
abstract, in the sense of providing designers and implementors with a concise
set of primitives and language constructs which are efficiently implementable
yet not at all far from a process calculus-like level of abstraction.

– Fourthly we have the potential to maintain strong links between running and
verified code. For instance, it will very often be possible to update proofs in a
fully automatic way after minor code revisions, by reapplying proof tactics.

– As a longer term perspective, we are interested in developing object and
component encapsulation techniques for which a code verification capability
is essential.

To realize the verification we used a tool [ADFG98], based on an approach to
compositional verification which we have developed in some recent papers (c.f.
[Dam98, DFG98]). The approach uses a tightly integrated mix of state-space
exploration and proof-editing techniques. System properties and specifications
are given in a first-order temporal logic, a variant of Park’s µ-calculus [Par76]
tailored, in this case, specifically to Erlang. Proof goals are stated as general
Gentzen-type sequents, proved in a goal-driven fashion by refinement and loop
detection. The result is a very powerful proof system which supports model
checking, compositional reasoning, and general coinductive or inductive reason-
ing, for instance about datatypes, in a uniform framework.

In Sect. 3 we briefly describe our approach to specification. In Sect. 4 the
actual verification is described and an outline of the informal proof is presented.
Then, in Sect. 5, we describe in more detail our approach to formalisation of
the proof, and its realisation in the verification tool. Large parts of the proof are
easily automatable by tactics that perform model-checking like state exploration,
or prove type adherence or termination of sequential functions. Since these tactics
are often used within interactively developed proofs, our verification approach
gives rise to proofs that easily become large enough (several thousand nodes) for
tool support to be essential. We conclude, in Sect. 6, with some final remarks,
reflecting on the approach followed and lessons learned from performing this case
study.

2 A Process Verification Problem

In this section we explain the mechanism for query lookup and the property we
have proved.

The database tables in which the requested information is stored are dis-
tributed over several computers. Whenever a query is formulated for the database
the Erlang function query setup is called to analyse the query and divide it into
subqueries each addressing only one table. The subqueries are distributed over
a network (by the Erlang funtion mk ring) as processes located at the computer
where the information is available. A request is sent to the first of the spawned
processes, which reads data from a table. This results in several partially in-
stantiated queries, which are sent to the next process. For every such partly



Verifying a Distributed Database Lookup Manager Written in Erlang 685

instantiated query, the next process reads additional data from a table, result-
ing in further instantiations. The last process gathers all data and sends it to the
requesting process. To avoid unnecessary delays in transmission, processing, and
database lookup, and to avoid excessive storage consumption, query processing
is split into segments.

6
?

�

��
P1

�
��=

�

��
P2

Z
ZZ}

�

��
Pn

�

��
Pn-1

B
B
BBN

�
��

-

�� ��
� �
� �� ��� ��

� �
� �� �

�� ��
� �
� �� �

Fig. 1. Ring of processes attached to tables, with P1 the initial process

We identify an initial process taking care of a query by partioning it into
subqueries, represented by Erlang functions, whereafter for every such subquery
a process is created on a computer where the subquery can find its information.
All spawned processes execute the same function (viz. process in ring), which
have one of the Erlang functions that represents the subquery as an argument.
The processes are spawned in a ring configuration (by mk ring) and the initial
process may be seen as a distinguished member of this ring.

query setup(Query,DBStructure) ->
SubQueries = split handle(Query,DBStructure),
mk ring(self(),SubQueries).

mk ring(NextPid,SubQueries) ->
case SubQueries of
[]->

wait for request(NextPid);
[Q|Qs] ->

mk ring(spawn(process in ring,[NextPid,Q,[]]),Qs)
end.

In our approach we abstract from the actual computation of the subqueries
and assume that this computation results in a list of functions (represented by
SubQueries) with at least one element. For every such function a process is cre-
ated on the appropriate machine (by spawn(process in ring,[NextPid,Q,[]])
where Q represents the subquery and is one of the three arguments of the spawned
function process in ring), where the name of the machine is computed together



686 Thomas Arts and Mads Dam

with the subquery itself. For readability, we have chosen not to present the ma-
chine name and perform the spawning on only one machine. Spawning on several
machines is done similarly, where the Erlang spawn primitive needs the machine
name as an additional argument.

The function process in ring is spawned with three arguments, the process
identifier (pid) of the next process in the ring, the function representing the
subquery, and the empty list representing a local store for the process (see below
for more details on this store).

After spawning the ring (Fig. 1), the initial process (P1) executes the func-
tion2

wait for request(NextPid) ->
receive
{user request,UserPid,NrSolutions} ->

PacketSize = some value smaller(NrSolutions),
NextPid!{[[]],PacketSize},
counting(NextPid,UserPid,NrSolutions,[])

end.

with as argument the next process in the ring (Pn). Now P1 is ready to receive a
message of the form {user request, UserPid, NrSolutions} where the triple
represents an atom user request to identify the message type, the pid of the
requesting process and the maximum number of solutions that the latter process
wants to receive. Observe that, because of the asynchronous communication
discipline of Erlang, a user request may arrive at the mailbox of the initial
process long before it is actually processed.

Whenever this message arrives, a message is sent to the consecutive process in
the ring (Pn), which is the first process able to perform a subquery lookup. The
process P1 subsequently calls the function counting, which collects all answers
that the subqueries of the ring produce. The idea is that for all solutions that
a process in the ring receives, it computes all new solutions using its subquery
lookup function. This might result in an increase or decrease of the number of
solutions. These new solutions are passed to the next process and so on, until
P1 receives the answers and can present them to the user.

However, in order not to overload the network, the processes in the ring
are not sending all the answers they find, but just a fixed number given by
PacketSize, which is dynamically determined by P1 (via the dummy function
some value smaller, where we abstract from the real computation) and de-
pends on the number of requested solutions and the network load. Thus, the
number PacketSize is sent along in the message from P1 to the next process Pn

in the ring. The latter process computes all answers it can find according to
its subquery and sends at most PacketSize of these answers to the next process,
whereas the remaining answers are kept in the store. All consecutive processes in
the ring perform the same actions and eventually P1 receives at most PacketSize
2 In the real code this receive statement is incorporated in the function mk ring, this

has been modified for clarity of presentation.



Verifying a Distributed Database Lookup Manager Written in Erlang 687

answers. The process P1 may now add these answers to its store and as long as
the store is less than the demanded number of answers (NrSolutions) a message
will be sent to the process Pn requesting to produce new answers.

counting(NextPid,UserPid,NrSolutions,Store) ->
receive

{Solutions,PacketSize} ->
NewStore = Solutions ++ Store,
SolutionsToGet = NrSolutions - length(NewStore),
case {Solutions,SolutionsToGet =< 0} of
{ ,true} -> % enough solutions found

UserPid!{user response,NewStore}
{[], } -> % no more solutions in DB

UserPid!{user response,NewStore}
Otherwise ->

NextPid!{[],PacketSize},
counting(NextPid,UserPid,NrSolutions,NewStore)

end
end.

Except for the initial processes, all other processes in the ring, i.e. P2, . . . , Pn,
are evaluating the function process in ring.

process in ring(NextPid,Filter,Store) ->
receive

{Solutions,PacketSize} ->
case PacketSize =< length(Store) of
true ->

{ToSend,ToStore} = split(PacketSize,Store),
NextPid!{ToSend,PacketSize},
NewStore = ToStore ++ flatmap(Filter,Solutions),
process in ring(NextPid,Filter,NewStore);

false ->
NewStore = Store ++ flatmap(Filter,Solutions),
{ToSend,ToStore} = split(PacketSize,NewStore),
NextPid!{ToSend,PacketSize},
process in ring(NextPid,Filter,ToStore)

end
end.

These processes wait for a message containing at most PacketSize answers
of the previous process and the value PacketSize itself. The number of stored
answers is compared to the number PacketSize of demanded answers and if
enough answers are already in the store, these are sent along to the next process
and new answers are computed. In case not enough answers are stored, first all
new answers are computed, whereafter at most PacketSize answers are sent to
the next process and all other answers are stored for the next round. Answers



688 Thomas Arts and Mads Dam

are computed using the function flatmap which applies the function Filter
to any partially instantiated query in the list Solutions. The function Filter
has been generated from the original query and the database and was given as
an argument of the spawned function. We abstract from this function and only
assume that Filter is a terminating function that results in a (probably empty)
list of arguments. The function flatmap results in the concatenation of all lists
that result from applying Filter to all arguments of Solutions, which might
either be a longer or a shorter list than the Solutions itself. In this way, the
store of the process may increase and decrease dynamically.

The function split divides a list in two sublists of which the length of the first
list contains the first PacketSize elements of the list, provided that PacketSize
is given as an argument to the function. Functions like =< and ++ have their
usual meaning. In the verification process these functions are not considered as
build-in functions, like they are in Erlang, but are specified separately.

The property that we want to verify is informally described as ‘Is the retrieval
of the information terminating?’ In other words, given an arbitrary query and
an arbitrary positive integer, whenever we build a ring corresponding to this
query and send a message of the form {user request,MyPid,Number} to the
first process in the spawned ring, do we always eventually receive a message
back with at most this Number of solutions in it?

3 The Specification Logic and Its Proof System

It is not completely trivial to come up with a correct formal rendition of the
property outlined at the end of Sect. 2. A first step is to understand correctly
the abstract execution mechanism of Erlang. We gave a core fragment of Er-
lang, involving, roughly, the features used in the present example, an SOS-style
operational semantics. Among the more tricky features to model adequately is
communication. In Erlang interprocess communication is asynchronous. Each
process is equipped with one mailbox. Sending is non-blocking: The transmitted
message is placed at the end of the mailbox belonging to the receiving process.
Messages are subsequently read by retrieving the first message in the mailbox
matching a given pattern. Since we need to analyse behaviour both at the level
of processes and process communication and at the level of sequential function
elaboration we are forcing a separation between the time at which a message
packet crosses a process boundary (or: enters the schedulers domain, i.e. the
process mailbox), and the time at which the packet is read from the mailbox by
the receiving process.

A second step is to adequately account for the execution behaviour of pro-
cesses in a formal property specification language. Our work has been based on
a first-order fixed point calculus inspired by Park’s µ-calculus [Par76, Koz83],
extended with Erlang-specific features. In summary this logic is based on the
first-order language of equality, extended with modalities reflecting state tran-
sition capabilities, least and greatest fixed points, along with a few additional
primitives. Using µ-calculus correctly is by itself well known to be tricky. On



Verifying a Distributed Database Lookup Manager Written in Erlang 689

the other hand we have found the µ-calculus recursive style of specification ex-
tremely natural and useful. We have used an equational style of specification,
using the notation

prop(args) ⇒ body

for greatest fixed points (the body can be inferred from the head), and

prop(args) ⇐ body

for least fixed points (the head must be inferred from the body). Whereas this
notation is fraught with danger (how are dependencies resolved?) a clear benefit
of such a notation is that it encourages a programming language style of spec-
ification defining “larger”, more complicated properties in terms of “smaller”
ones.

The benefits of the equational style of specification becomes apparent, in
particular, once properties are decomposed. To do this one typically needs to
express state, liveness, or safety properties embedded inside another invariant
which needs to adequately capture all possible ways in which the processes can
interact, and the consequences of these interactions. An example of the shape of
a property one obtains is (1) below.

A complication which is more semantical than due to the recursive style of
specification is Erlang’s asynchronous communication. Since receivers are pow-
erless to influence the delivery of packets into receivers mailbox, for the purpose
of packet delivery events, and in the absence of a suitable fairness assumption
(which we have not so far implemented), it is possible for packet delivery to con-
tinuously preempt progress by the local process. In this example we have been
able to bypass this problem, as the ring structure enforces a synchrony property
that ensures to a sufficient extent that mailboxes do not grow in unbounded
manners.

3.1 The Logic

Typical Erlang-related primitives are the term = e to pick up the Erlang ex-
pression associated with the process under evaluation and compare this with the
term e; unevaluated which is true if the Erlang expression under evaluation is
not yet in normal form; and similar primitives for queues and process identifiers
with are local or foreign to the system under consideration.

The modal operators <·> and [·] (not to be confused with the Erlang list
constructors [] (the nil list) and [hd |tl ]) are used to express transition capabilities.
The formula <>φ holds if an internal transistion is enabled to a state satisfying
φ. Similarly, we have a diamond operator for the non-internal transitions for
sending and receiving, viz. <P !V >φ and <P?V >φ. Observe that the receive
modality is “appending to recipients mailbox”. The box operator is the dual
of the diamond operator, expressing that a formula should hold in all states
reachable in one transition from the current state.

Using least and greatest fixed point temporal properties, like liveness and
safety, can easily be expressed. Furthermore simple data types, like lists and
natural numbers, can be expressed using least fixed points:



690 Thomas Arts and Mads Dam

list(L) ⇐ (L = []) ∨ ∃H.∃T.(list(T ) ∧ (L = [H |T ]))

Combinations of both greatest and least fixed points are used to express the
complicated eventuality properties we deal with in this case-study. A represen-
tative example of the latter is the formula that expresses that the property
wait for input holds for an arbitrary number of internal computation steps, un-
til a certain shape of message is received and the property continue holds. The
properties wait for input and continue will typically be mutually recursive, so
let us assume that wait for input is defined in the context of a definition

continue ⇒ · · ·wait for input(. . .) · · · .

Now wait for input is defined in the following way:

wait for input(RightForm) ⇒ wait for input’ (RightForm) (1)
wait for input’ (RightForm) ⇐ []wait for input’ (RightForm) ∧

∀P.∀V.([P !V ]false) ∧
∀P.∀V.([P?V ](RightForm(P, V ) ∧
continue))

The least fixed point ensures that the predicated process does not diverge (i.e.
performs an infinite sequence of internal computation steps without ever writ-
ing an incoming message to its mailbox. The greatest fixed point on the other
hand permits states satisfying wait for input infinitely often, as long as they are
infinitely often separated by continue states.

4 Outline of the Proof

According to the informal property as stated in Sect. 2, we are dealing with two
actions initiating the query lookup: first the ring is built and thereafter a request
message is sent to the first process in this ring. For verification we are focusing
on the outcome of the valuation of the Erlang expression:

Ring = spawn(query setup,[Query,DBStructure]),
Ring!{user request,self(),NrSolutions},
receive

{user response,Solutions}
end.

where we quantify over all possible values of Query, DBStructure, NrSolutions
and Solutions. We abstract from the first two variables by assuming the function
split handle to result in a list of functions, where the real interesting issue is
the length of this list, which can be any positive integer determining the number
of processes in the ring. The property we address in this paper is that evaluation
of this Erlang expression is terminating. Similar properties of interest are:



Verifying a Distributed Database Lookup Manager Written in Erlang 691

– The number of received answers is equal to the number of demanded answers
if that many answers exist in the database.

– The set of obtained answers is independent of the packet size, provided the
latter is a positive number.

Given the experience of, e.g., the wait for input formula (1) formulating the re-
sponsiveness property is not too difficult. The specification will have the following
shape:

spec ⇒ spec’
spec’ ⇐ 2spec’ ∧ ∀P.∀V.[P !V ]false ∧

∀P.∀V.[P?V ]((P = userpid) ∧
∃From .∃N.(V = {user request,From, N}) ∧ φ)

where φ expresses responsiveness in a similar style, that eventually a user re-
sponse is sent to the pid From, before returning to a state satisfying spec. Several
details are omitted in this description: Information about process identifiers and
the store have to be carried over to the property φ, and assumptions concerning
the return address From, and the types of other arguments have to be made.

The basic style of specification is one of distinguishing abstract states in
which (aggregate sets of) processes may find themselves. The abstract states
will often correspond to infinitely many actual states of the process. For every
process we define a few abstract states and formulate which properties should
hold in these states and how one property depends on the other. The processes
we consider are the initial process evaluating the given Erlang expression, a ring
process (which is not the initial one), and, as part of an inductive argument, a
ring segment which includes the initial process.

4.1 The Ring Invariant

The basic difficulties in proving the specification to hold are the unbounded
number of ring processes which can be created, and the unbounded number of
query replies which can be requested. To address these difficulties we resort to
induction. We identify two invariants:

1. An invariant to hold of each of the ring processes P2, . . . , Pn (c.f. Fig. 2).
2. A sort of structural and temporal invariant for a ring segment of the shape

P1, Pn, . . . , Pi with 2 ≤ i ≤ n.

Let us call the first invariant proc wait for input and the second invariant for
rootspec. We first need to show that rootspec is strong enough to derive the end
specification we wish to establish, i.e. a sequent of the shape

x : rootspec(· · ·) ` x : spec(· · ·). (2)

The task is thus to prove that rootspec holds of the process initially evaluating
query setup:

some assumptions ` proc(query setup(· · ·), · · ·) : rootspec(· · ·) (3)



692 Thomas Arts and Mads Dam

�

��
P1

�
��=

�

��
P2

Z
ZZ}

�

��
Pn

�

��
Pn-1

B
B
BBN

�
��

-













Q
Q
Q
Q
Q

Fig. 2. Induction on number of processes in ring

Here proc denotes the Erlang process for which rootspec has to be proved. Such
a process consists of the Erlang term to be evaluated, the process-identifier and
the message queue associated with the process. Using straightforward, and fully
automatable, state exploration techniques which we return to in the following
section we can reduce (3) first to a subgoal of the shape

some assumptions ` proc(mk ring(· · ·), · · ·) : rootspec(· · ·) (4)

and then, by continuing state exploration, to a subgoal of the shape

some assumptions ` proc(mk ring(· · ·), · · ·) ‖ (5)
proc(process in ring(· · ·), · · ·) : rootspec(· · ·)

The idea is to prove two lemmas, one stating the correctness of process in ring,

some assumptions ` proc(process in ring(· · ·)) : proc wait for input(· · ·) (6)

and one concerning the composability of rootspec with proc wait for input ,

C1 : rootspec(· · ·), C2 : proc wait for input(· · ·) ` C1 ‖ C2 : rootspec(· · ·) (7)

Subgoal (7) states a compositional property of root and ring processes: putting
together a (possibly aggregate) process (P1) acting as a root with a (possibly
aggregate) process acting as a ring element results in an aggregate process which
again acts as a root. Obviously the correctness of this statement is crucially
dependent on input and outputs being properly connected, which are matters
we will not be concerned with here.

By themselves, (6) and (7) are not sufficient to conclude (5). However, using
(6) and (7) it is possible to reduce to a goal which is actually an instance of the
goal (4), and the remarkable fact is that, in principle, an inductive argument
can be set up such that at this point the proof can be completed (c.f. [DFG98]).
In realizing this proof, however, a number of complications must be attended to
which we return to in Sect. 5.



Verifying a Distributed Database Lookup Manager Written in Erlang 693

4.2 Properties of the Separate Processes

We are thus left with two main subgoals, one of the shape (6), and one of the
shape (7). We do not comment further on (7) other than observe that the ring
process property proc wait for input we are looking for must be strong enough
to permit (7) to be proved. Instead we turn to proc wait for input .

We start by observing the role of a special token that is initially sent by the
first process (P1) in the ring and implies termination as soon as it is also re-
ceived by this process, i.e. when the token has gone through the entire ring. This
special token ({[],PacketSize}), which we call the end token for convenience,
is repeatedly send by P1 to Pn after initially sending {[[]],PacketSize} once.
In case the number of demanded solutions is larger than the number of solutions
present in the database, the process P1 can only respond to the user when this
end token is received from the process P2.

The first process in the ring P1 plays a special role and the abstract states
we distinguish for this process are

1. the process is waiting for a user request,
2. a non-end token is sent to the next process (Pn) and the process is waiting

for a message,
3. an end token is sent to the next process and the process is waiting for a

message,
4. a non-end token is received and not enough answers are collected,
5. the end token is received or another token is received and enough answers

are collected.

Our choice to follow the real code and not to abstract from the actual count-
ing of the number of answers, causes the state space of this first process in the
ring to be unbounded. For this reason, modelchecking is infeasible for this part
of the proof as well, but with our verification tool such a proof can be handled.

States that we distinguish for the processes in the ring are characterized
by whether or not they receive an end token and whether or not they send an
end token. Crucial is the observation that after receiving an end token once,
only end tokens can be received successively. The latter is a property of the
ring and not of the process itself, but when proved for the ring, we use it in
our formalization to disallow the state transition from receiving an end token to
receiving a non-end token.

For a process in the ring (P2, . . . , Pn) we define four abstract states, depend-
ing again on the end token:

1. the process awaits the reception of an arbitrary message,
2. the process receives an end-message and sends a message to the next process,
3. the process receives a non-end-message and sends a message to the next

process,
4. the process waits for receiving a successive end-message.

Every state is captured in a property, but also the relation to the other ab-
stract states is reflected in this same property using the fixed point operators.



694 Thomas Arts and Mads Dam

The proof boils down to the observation that if the end token is repeatedly re-
ceived the process is forced to pass on at least one element of its store. Thus
the store becomes smaller and smaller and when empty, the process sends the
end token as well. Note again that a property outside the view of the process
in the ring should ensure that after receiving an end token we cannot receive
a non-end token anymore. This property is hidden in the relation between the
properties of consecutive states, but is proved in the more general setting.

5 Proof Search and Automation

The success of our interactive theorem-proving based approach in large-scale
applications is heavily dependent on three factors:

1. Robust tactics that help solve and reduce subproblems of clearly identifiable
natures.

2. Use of such tactics to the maximal extent possible, to eliminate user inter-
vention whenever possible.

3. A user interface that helps users navigate and assist the theorem proving
process in a meaningful way, when such assistance is really required.

To minimize user intervention we adopt as lazy an approach to proof search
as we have found possible, using existential variables to delay commitments
to existential witnesses, proof goals stated as general Gentzen-type sequents to
delay commitments to disjunctive choices, and a lazy approach to induction using
loop detection which we have introduced in some recent papers (c.f. [DFG98]).

5.1 Induction and Discharge

As we outlined in the previous section we use a very tightly integrated mix of
state-space exploration and proof-editing techniques. As in most proof editors
the proof construction process is a goal-driven one: Proof goals in the form of
Gentzen-type sequents are refined in steps by the application of one of a number
of primitive proof rules.

Most proof goals call for induction (or coinduction) for their proofs. Many
types of induction are involved in an example such as the one we consider here:

– Induction on number of evaluation steps.
– Induction on size of data values, such as numbers or lengths of lists.
– Induction on the structure of function expressions.

Induction on the number of execution steps from some initial configuration is
typically used if we prove that computing the length of a list results in a natural
number, or that comparing two numbers results in a boolean. Coinduction is
used, typically, for invariants, by showing that the invariant remains unbroken
after any number of computation steps. General programs involve data type oper-
ations, communication, and, maybe, dynamic creation of new processes, in man-
ners which are interwoven to considerable extents, as happens in our database



Verifying a Distributed Database Lookup Manager Written in Erlang 695

lookup manager. To handle these complications, most parts of the proof will
involve induction and coinduction at many levels simultaneously, in manners
which, when properly formalized, may be exceedingly complicated. Our proof
theoretic approach, using loop detection, or discharge, allows very substantial
parts of this formalisation to be almost completely hidden from the user. The
discharge mechanism implemented in the tool follows the principles laid out in
[DFG98]. In effect the discharge mechanism attempts to cast the proof as so far
constructed as a proof by simultaneous induction, by seeking an ordering that
makes the dependency relation between induction and coinduction variables a
well-founded one. Maintaining the constraints on this dependency ordering is
done by the proof editor. Thus there is no need for users to specify the sequence,
nesting, or mutual dependencies of simultaneous inductive arguments, or even to
state that induction is being used. All this is managed by the tool. However, the
user will need to have a basic understanding of the general principles of simul-
taneous induction for the operation of the discharge rule to be understandable.
And, most importantly, the tool has no built-in support for finding inductive
assertions. Such support can be programmed (as tactics), or must alternatively
— as in our case — be provided explicitly.

5.2 Proof Construction

Our proof approach, and the size of problems which we address, gives rise to
complications concerning proof sharing and proof construction which we have
had to address.

A naive implementation of a proof editor for Erlang quickly runs out of
space, because of the large number of independent transitions. Observe that
independence is a feature not only in-between processes, but also within a sin-
gle process independent choices can be viewed as arising between writing an
incoming message to the local mailbox, or letting local computation progress.
As a consequence, state spaces for even small, single processes grow very sig-
nificantly. To handle this we implemented an inference rule, copy discharge for
subproof sharing to close proof branches in case they are seen to have already
been dealt with elsewhere.

Example 1. The Erlang semantics is such that one can always receive a mes-
sage in the mailbox. Thus, in many properties we state that either an internal
action is possible, or the process may receive something in the mailbox. Here
the proofnode has two branches, performing the action or receiving the message.
After performing the action, one normally should be able to receive the message
anyway and after receiving the message, one can still perform the action. Instead
of searching for, and constructing, the proof twice, we use copy discharge to join
the nodes. Since this is done recursively, one easily sees that the prooftree would
grow exponentialy when we lack this copy discharge.

Observe that a correct implementation of the copy discharge feature is compu-
tationally quite expensive: to check for circularity, to support “undo”, and to
interact correctly with existential variables.



696 Thomas Arts and Mads Dam

To support discharge and, in particular, subproof sharing it seems essential
to maintain a “current” proof tree, and to have rules of proof elaborate this proof
tree through side effects. Observe that this makes the proof construction process
very different from that of other proof editing tools (such as PVS [ROS92, Sha96],
Coq [DFH+], Lego [Lego], Isabelle [Pau94],...) which maintain only the leaves,
but not the internal structure of proof trees. Thus, in these tools one shares
subproofs by having the user formulate lemma’s which are used for several leaves.
We overcome this user intervention and in case a subproof need not be performed,
this is detected automatically.

5.3 Tactics

The construction of proof trees by side effects has drastic impact on the pro-
gramming of tactics, for instance. The benefit, besides the support of discharge
and (in particular) copy-discharge, is that the entire proof tree becomes available
for inspection and navigation. In fact, to help keep the information manageable
we implemented a facility for suppressing the creation on new nodes. The cost
of maintaining the complete proof tree, on the other hand, is that tactics pro-
gramming becomes much more difficult, and that the attractive, and very tight,
connections between term and proof structure evident from e.g. type theory, get
lost. So far we have implemented a rather “dirty” solution, giving users access to
the basic proof rules themselves, to a set of basic rules for accessing and travers-
ing proof trees, to a small set of tactic constructors, like sequential composition,
conditional, etc, and to a higher-order tactic definition facility.

Another example is outlined on Fig. 3 which is shown less for its details than
to give a general impression of the shape of tactics we used for the example. In
our case study tactics were indispensable. They permitted us to produce very
large parts of the proofs entirely automatically. We implemented tactics for a
wide range of purposes, and of very different generality. For instance it is quite
easy to implement simple proof strategies for boolean formulas as tactics.

Example 2. A coarse approximation of the Erlang function process in ring as
presented in Sect. 2, just receiving an integer, incrementing it by one and passing
it on:

process in ring(NextProcess) ->
receive
N -> NextProcess!(N+1),

process in ring(NextProcess)
end.

The following “wait for input” property expresses the behaviour of such ring
processes in state transition terms:

wait for input(pid1, pid2) ⇒ wait for input’(pid1, pid2)
wait for input’(pid1, pid2) ⇐ []wait for input’ (pid1, pid2)

∧ ∀P.∀V.[P !V ]false



Verifying a Distributed Database Lookup Manager Written in Erlang 697

/* resolvable: Proof branch can be closed */

rule resolvable =

eq r() /* Node is provable equality */

orelse id() /* Node is instance of id rule */

orelse ...

orelse copy discharge() ;

/* rightexpandable: Goal can be reduced but not closed */

rule rightexpandable =

or r() orelse and r() orelse ... orelse all r

orelse box sem() ; /* Chase transition */

rule rightreduce =

block
if isleaf() /* Node is not yet reduced */

then if resolvable ()

then skip

else if rightexpandable()

then block next above() ; rightreduce end
else fail("rightreduce")

else fail("rightreduce")

end ;

Fig. 3. Tactic for simple “model checking”

∧ ∀P.∀N.[P?N ]((P = pid1) ∧
nat(N) → respond(pid1, pid2))

respond(pid1, pid2) ⇒ respond’(pid1, pid2)
respond’(pid1, pid2) ⇐ []respond’(pid1, pid2)

∧ ∀P.∀V.[P !V ]((P = pid2) ∧
nat(V ) ∧ wait for input(pid1, pid2))

Using a tactic based on right reduce above the proof goal (6) was proved
automatically, with subproof sharing, using 212 nodes, 1 application of discharge,
and 7 applications of copy-discharge. Turning subproof sharing off the same
tactic required 530 nodes and 12 applications of discharge. The size increase is
due to one subproof being duplicated thrice.

For larger sequential functions than the one considered in Ex. 2 the issue
of subproof sharing becomes very urgent, and it is not hard to realize that an
exponential growth in proof size will be the rule rather than the exception.

Also for sequential function evaluation we found tactics very helpful. The
counting function, for instance, appeals to a number of small auxillary func-
tions like length, split, flatmap, or comparison operators like ≥ which are
implemented as functions as well. Frequently small lemmas are needed to show



698 Thomas Arts and Mads Dam

termination, or to show type preservation properties which are not guaranteed
in general, as Erlang is an untyped language.

Tactics in a style similar to that of Fig. 3 were developed to prove type ad-
herence of Erlang expressions. With these tactics we could automatically prove,
for instance, that

– if Store represents a list, then length(Store) results in a number,
– if Store represents a list and PacketSize a number, then PacketSize =<

length(Store) results in a boolean, and
– appending two lists results in a list.

These sorts of tactics were used to bring down the complexity of the proof by
reducing large proof goals to smaller ones which could eventually be completed
using one of these tactics. Recent experiments within the framework of term
rewriting systems indicate that even larger parts of the proof for the property
of the separate processes are subject to automation [AG99].

5.4 Using the Tool in Practice

Mixing automated and interactive verification in the manner we propose puts
very considerable demands on the user interface, to aid users control of possibly
very large proofs. The tactic programming language gives a lot of help, providing
facilities for naming and retrieving nodes, and for defining search and navigation
procedures. The simple tactics we developed for “model checking”, type check,
and termination, turned out to be surprisingly robust, requiring little adaptation
even for quite substantial modifications to the functions and properties being
checked. In our case study so far we have proved a number of properties for
the ring process, and for various approximations of it in the style of Ex. 2. The
most sophisticated of those proofs contains about 2000 proof nodes, of which
two thirds have been generated automatically. We also proved a version of the
composition property as stated in (7). This proof uses in the order of 700 nodes,
and so far we have not mechanized this. It is representable of a kind of proof
which we expect to be able to mechanize almost completely in the future. To
help visualisation we interfaced our tool to the daVinci graph display facility
[FW94]. Small graphs, less than 1000 nodes, are easily displayed by daVinci,
and it provides good help, for instance in debugging proof tactics. For larger
proofs graphs really need to be displayed incrementally (not very well supported
currently) or in segments, to avoid excessive delays.

6 Conclusions

Our report is a tentative one, reporting more on qualitative than quantitative
experiences with the use of a novel approach to code verification for distributed
systems. The report must be a tentative one, since there really are not many tools
or proof approaches around with a similar scope of addressing dynamic process
networks on the level of actual running code without resorting to approximate



Verifying a Distributed Database Lookup Manager Written in Erlang 699

techniques. The database lookup manager which we addressed was about 200
lines of code and explored most “core” features of the Erlang language includ-
ing list and number processing, communication, and dynamic process creation.
Experience with Erlang at Ericsson has indicated that — as a rule of thumb —
one line of Erlang code corresponds to six lines of C.

A central issue on which we have as yet little to say is scalability. Since
our proof system is highly compositional it is actually realistic to hope to reuse
proofs together with their associated code modules. As yet, however, we have
little practical experience with this.

The proof approach which we follow requires user intervention. We have
developed tactics which are quite robust and manage to produce large parts
of proofs without any user intervention at all. Moreover it is quite realistic in
many cases to hope to automate almost the entire proof search process, even
in cases when model checking-like techniques fail. The critical point at which
user intervention is really essential is, of course, in the identification of inductive
assertions. In the example studied here this was not at all easy. A particular
source of headache was the handling of process identifiers which in Erlang play
a role not unlike names in the π-calculus. Even though our handling of process
identifiers (pids) and pid creation in Erlang is as yet imperfect, the tool was
able to assist the identification of inductive assertions quite substantially, by
having tactics which were sufficiently robust to often accomodate smaller formula
modifications completely automatically.

Acknowledgements

Hans Nilsson deserves our special thanks for bringing forward the verification
problem we considered in this paper and for the time he spent in explaining us the
details. We like to thank Lars-Åke Fredlund for his helpful hints and his constant
support for the proof system and Gena Chugunov for digging into some nasty
details of the proof. The second author was supported by the Swedish National
Board for Technical and Industrial Development (NUTEK) through the ASTEC
competence centre.

References

[AVWW96] J. Armstrong, R. Verding, C. Wikström and M. Wiliams, Concurrent
Programming in Erlang. 2:nd edition, Prentice-Hall, 1996.

[ADFG98] T. Arts, M. Dam, L-Å. Fredlund, and D. Gurov, System Description: Ver-
ification of Distributed Erlang Programs. In Proceedings 15th Conference
on Automated Deduction, LNAI 1421, p. 38–42, July 1998.

[AG99] T. Arts and J. Giesl, Applying Rewriting Techniques to the Verification
of Erlang Processes. In Proceedings of the annual conference of the Euro-
pean Association of Computer Science Logic, September 20-25, 1999. To
appear in LNCS.

[Cri95] R. Cridlig, Semantic Analysis of Shared-Memory Concurrent Languages
Using Abstract Model Checking. In Proc. PEPM’95.



700 Thomas Arts and Mads Dam

[Dam98] M. Dam, Proving Properties of Dynamic Process Networks. Information
and Computation, 140, p. 95–114, 1998.

[DFG98] M. Dam, L.-Å. Fredlund and D. Gurov, Toward Parametric Verifica-
tion of Open Distributed Systems. H. Langmaack, A. Pnueli, W.-P. De
Roever (eds.), Compositionality: The Significant Difference, Springer Ver-
lag, 1998.

[DFH+] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C.
Paulin-Mohring, and B. Werner. The Coq proof assistant user guide, Tech-
nical report, INRIA-Rocquencourt, May 1993.

[FW94] M. Fröhlich and M. Werner. The graph visualization system daVinci –
a user interface for applications. Technical Report 5/94, Department of
Computer Science, Bremen University, 1994.

[Koz83] D. Kozen, Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[Lego] The Lego Proof Assistant, http://www.dcs.ed.ac.uk/home/lego/.
[Mnesia] C. Wikström, Hans Nilsson and H̊akan Mattson, Mnesia Database Man-

agement System, In Open Telecom Platform users manual, Open Systems,
Ericsson Utvecklings AB, Stockholm, Sweden, 1997.

[Nil99] H. Nilsson, Patent application, 1999.
[OSE98] Open Source Erlang, http://www.erlang.org, 1998.
[Par76] D. Park, Finiteness is mu-ineffable. Theoretical Computer Science, 3:173–

181, 1976.
[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828, 1994
[ROS92] J. Rushby, S. Owre and N. Shankar. PVS: A prototype verification sys-

tem. In Proceedings 11th Conference on Automated Deduction, LNAI 607,
pp. 748–752, 1992.

[Sha96] N. Shankar. PVS: Combining specification, proof checking, and model
checking. In Proceedings of Formal Methods in Computer-Aided Design,
LNCS 1166, pp. 257–264, November 1996.


	Introduction
	A Process Verification Problem
	The Specification Logic and Its Proof System
	The Logic

	Outline of the Proof
	The Ring Invariant
	Properties of the Separate Processes

	Proof Search and Automation
	Induction and Discharge
	Proof Construction
	Tactics
	Using the Tool in Practice

	Conclusions

