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Abstract. In this paper we present a new modeling formalism that is well suited
for modeling real-time systems in different application areas and on various levels
of abstraction. These I/O-interval structures extend interval structures by a new
communication method, where input sensitive transitions are introduced. The
transitions can be labeled time intervals as well as with communication variables.
For interval structures, efficient model checking techniques based on MTBDDs
exist. Thus, after composing networks of I/O-interval structures, efficient model
checking of interval structures is applicable. The usefulness of the new approach
is demonstrated by various real-world case studies, including experimental results.

1 Introduction
For modeling real-time systems it is necessary to have a formalism which allows the
explicit declaration of timing information, e.g., a valve needs 5 seconds to open. More-
over, for real-time systems, typical delay times may vary, e.g., due to fabrication toler-
ances and thus have to be represented by time intervals indicating minimal and
maximal time bounds. Since systems are often described in a modular manner, these
modules have to communicate with each other. This means, the modeling formalism
must be strong enough for expressing communication.

Many approaches for modeling real-time systems exist. Two main approaches have
to be distinguished: those based on timed automata [1] and those extending finite state
machines (FSM). Both classes of formalisms have disadvantages.

Timed automata have complex model checking algorithms [2,3,4]. Moreover,
timed automata use an event-based communication, i.e., transitions in the automata are
labeled with events, and transitions with same labels in different automata are synchro-
nized during composition. This event-based communication is not the usual form of
hardware communication. In hardware there exist signals which have a defined value
for all time instances and modules use the output signals of other modules as inputs.

FSMs have no possibility to model quantitative timing effects. The expansions of
FSMs for modeling real-time systems [5,6] have no intuitive semantics according to
the specification logic [7] and there exists no composition strategy which is able to
combine many communicating modules.

In [8] we have presented a new formalism called interval structure. This formalism
has a proper semantics with regard to the specification logic (CCTL) and it allows the
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declaration of time-intervals. We developed an efficient model checking algorithm
based on an MTBDD representation of interval structures [9,10]. In [11] we have pre-
sented a method for the composition of interval structures completely working on the
MTBDD representation, including two minimization heuristics.

A natural model of a hardware system uses a description of several submodules
connected by wires. The description of submodules may contain free input variables. If
we now want to use interval structures for the modeling of timed sub-systems, the
advantages of a compact time representation gets lost, because at any time instance the
structure has to react to the free inputs. This effect destroys all timed edges and splits
them into unit delay edges. The resulting interval structure is in principal an FSM with
many new intermediate states.

Therefore, in this paper we extend interval structures by a signal-based communi-
cation mechanism. In order to model this communication properly, the I/O-interval
structures contain additional input signals and support input restrictions on timed tran-
sitions. With this concept there exist unconditional transitions only consuming time
(input-insensitive) as well as conditional transitions which consume time if they are
taken because inputs fulfil a input restriction (input-sensitive). With this formalism,
timed transitions are even possible if free input variables are introduced.

Furthermore, this communication allows the integration of untimed FSMs (e.g. a
controller) and I/O-interval structures (e.g. the timed environment). With some few
changes, the efficient composition algorithms of interval structures [11] are applicable
to I/O-interval structures. After composing networks of I/O-interval structures, the effi-
cient model checking algorithms of interval structures are applicable [8].

The following section introduces interval structures and their expansion, called I/
O-interval structures. In Section 3 the specification logic CCTL is presented. Section 4
gives a short overview about composition and model checking. Some case studies,
which show the flexibility of our new approach will be presented in Section 5. We
show that for many real-world examples, one clock per module is sufficient and realis-
tic. In Section 6, we show some experimental results. The last section concludes this
paper.

2 Using Structures for Modeling System Behavior
In the following sections we introduce Kripke structures and interval structures [8]. In
order to overcome some problems of interval structures that result whenever free
inputs are introduced, we extend these structures to I/O-interval structures.

2.1 Interval Structures

Structures are state-transition systems modeling HW- or SW-systems. The fundamen-
tal structure is the Kripke structure (unit-delay structure, temporal structure) which
may be derived from FSMs.

Definition 2.1. A Kripke structure (KS) is a tuple with a finite set
of atomic propositions. is a finite set of states, is the transition relation
connecting states. We assume that for every state there exists a state such
that . The labeling function assigns a set of atomic proposi-
tions to every state.

U P S T L, , ,( )= P
S T S S×⊆

s S∈ s' S∈
s s',( ) T∈ L: S ℘ P( )→
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The semantics of a KS is defined by paths representing computation sequences.

Definition 2.2. Given a KS and a starting state . A path is an
infinite sequence of states  with .

The basic models for real-time systems are interval structures, i.e., state transition sys-
tems with additional labelled transitions. We assume that each interval structure has
exactly one clock for measuring time. The clock is reset to zero if a state is entered. A
state may be left if the actual clock value corresponds to a delay time labelled at an
outgoing transition. The state must be left if the maximal delay time of all outgoing
transitions is reached (Fig. 2.1).

Definition 2.3. An interval structure (IS) is a
tuple with a set of atomic
propositions , a set of states (i-states), a transi-
tion relation between the states such
that every state in has a successor state, a state
labeling function and a transition
labeling function with

.

The only difference to KSs are the transitions
which are labeled with delay times. Every state of
the IS must be left after the maximal state time.

Definition 2.4. The maximal state time of a state
( ) is the maxi-

mal delay time of all outgoing transitions of , i.e.

.  (1)

Besides the states, we now also have to consider the currently elapsed time to deter-
mine the transition behavior of the system. Hence, the actual state of a system, called
the generalized state, is given by an i-state  and the actual clock value .

Definition 2.5. A generalized state (g-state) is an i-state associated with
a clock value . The set of all g-states in an IS  is given by:

 (2)

The semantics of ISs is given by runs which are the counterparts of paths in KSs.

Definition 2.6. Given the IS and a starting state . A run is a
sequence of g-states . For the sequence holds and
for all j it holds either

•  with  or
•  with  and .

The semantics of an IS may also be given in terms of KSs. Therefore in [11] we
defined a stutter state expansion operation on ISs, which transforms an IS into a KS.
Fig. 2.2 shows an example of expanding timed transitions with stutter states.

U P S T L, , ,( )= s0 S∈
p s0 s1 …, ,( )= si si 1+,( ) T∈

Fig. 2.1. Example IS

[2,4] a

a

0 1 2 3 4 time

ℑ
ℑ P S T L I, , , ,( )=

P S
T S S×⊆

S
L:S ℘ P( )→

I :T ℘ IN( )→
IN 1 …,{ }=

s
MaxTime:S IN0→ IN 0 0 …,{ }=

s

MaxTime s( ) max t s'. s s',( ) T t max I s s',( )( )=∧∈∃{ }=

s v

g s v,( )= s
v ℑ P S T L I, , , ,( )=

G s v,( ) s S 0 v MaxTime s( )<≤∧∈{ }=

ℑ P S T L I, , , ,( )= g0
r g0 g1 …, ,( )= g j s j v j,( ) G∈=

g j 1+ s j v j 1+,( )= v j 1 MaxTime s j( )<+
g j 1+ s j 1+ 0,( )= s j s j 1+( , ) T∈ v j 1 I s j s j 1+,( )∈+
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IS have no explicit input variables, i.e., if different ISs communicate with each other,
they have to share state variables. This communication scheme leads to the following
problems:
• one transition may depend on many different valuations of the input variables
• there may exist timed transitions which do not depend on (free) inputs but on the

other hand, a variable in an IS may not be declared as don’t care.

2.2 Interval Structures with Communication

To understand the second problem, we consider a transition with delay time four in a
IS, which is not dependent on an input variable ( ). It is however a member of the set
of atomic propositions of the IS. As defined in Def. 2.3, IS are not expressive
enough to represent this transition, except by splitting this transition into many unit
delay edges as shown in Fig. 2.3. After this splitting operation, the transition may be
taken, regardless of the input , but the advantage of the compact time representation
of IS gets lost.

To overcome these problems which become worse during composition, we introduce a
new modeling formalism: I/O-interval structures. These structures carry additional
input labels on each transition. Such an input label is a Boolean formula over the
inputs. We interpret this formulas as input conditions which have to hold during the
corresponding transition times. Input-insensitive edges carry the formula . The
formula  should not exist, since this transition can never be selected.

In the following definition we formalize Boolean formulas with sets of valuations
over the input variables. An element of the set defines exactly one valu-
ation of the input variables: the propositions contained in the set are true, all others are
false. An element of the set then defines all possible input valuations for one
edge. For example, given the inputs and , the set is represented by
the Boolean function . This example shows that the variable

does not affect the formula, i.e., the transition labeled with the formula may be
taken independent of the input .

Fig. 2.2. Expansion Semantics of a Timed Structure using Stutter States

Fig. 2.3. Modeling a free input  with an IS

[2,4]

3 stutter state

a

b

a

b

i
P

i

a
4

a

ii ii

i

true
false

Inp ℘ PI( ):=

℘ Inp( )
a b a{ } a b,{ },{ }

a b¬∧( ) a b∧( )∨ a=
b a

b
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Definition 2.7. An I/O-IS is a tuple . For accessing the
first (second) component of an element we write: ( ). (This
access operator is defined to all elements consisting of multiple components)

• The components  and  are defined analogously to IS
•  is a finite set of atomic input propositions
• The transition relation connects pairs of states and inputs:
•  is a transition input labeling function

We assume the following restriction on the input labelling:

(3)

This formula ensures that if there exist multiple edges starting in the same, then their
input restrictions are either equal or disjoint. This means, that the input valuations on
timed edges are clustered.

Definition 2.8. The cluster function computes all input valua-
tion of a cluster represented by an arbitrary member

(4)

All input evaluations belonging to the state are clustered. Because of equation (3) all
clusters of one state are disjoint, i.e. every evaluation of the input variables represents
the cluster it lies in.

Now we describe the semantics of the I/O-ISs by defining runs. Therefore we first
need the maximal state time.

Definition 2.9. The maximal state time is the maximal delay
time of all outgoing transitions, i.e.

(5)

G-states in I/O-IS also have to consider the actual inputs besides the i-state and the
elapsed time.

Definition 2.10. An extended generalized state (xg-state) is an i-state
associated with an input evaluation and a clock value . The set of all xg-
states in an I/O-IS is given by:

(6)

Definition 2.11. Given the I/O-IS , a run is a sequence of
xg-states . For the sequence holds and for all j
it holds either

ℑI O⁄ P PI S T L I I I, , , , , ,( )=
x S Inp×∈ x 1[ ] x 2[ ]

P S L, , I
PI

T S S× Inp×⊆
I I T ℘ Inp( )→:

t1 T . t2 T .
t1 1[ ] t2 1[ ]=( ) t1 t2≠( ) →∧

I I t1( ) I I t2( )=( ) I I t1( ) I I t2( )∩ ∅=( )∨ 
 
 

∈∀∈∀

C S Inp× ℘ Inp( )→:

C s i,( ) I I t( ) if s' S. i' Inp∈ .t∃ s s' i', ,( )= T i I I t( )∈∧∈∈∃

∅ otherwise



:=

MaxTime:S Inp× IN→

MaxTime s i,( ) :=

max v s' S. i' Inp∈ .t∃ s s' i', ,( )= T i I I t( ) v max I t( )( )=∧∈∧∈∈∃{ }

g s i v, ,( )= s
i Inp∈ v

GI s i v, ,( ) s S i C s i',( )
i' Inp∈
∪∈ 0 v MaxTime s i,( )<≤∧ ∧∈

 
 
 

=

ℑ P PI S T L I I I, , , , , ,( )=
r g0 g1 …, ,( )= g j s j i j v, j,( ) GI∈=
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•  with  and  or
• with , and .

I/O-IS may also be expanded to KS. The expansion works similar to IS, except for
input sensitive transitions. These transitions are expanded as shown in Fig. 2.3. After
the expansion, the efficient composition and model checking algorithms for ISs are
applicable.

Since we want to examine reactive systems of connected I/O-ISs, we assume that
for every xg-state and for every input evaluation there exists a successor xg-state. This
means for edges with delay times greater one there has to be a fail state in which is vis-
ited if the actual input does not fulfill the input restriction. This implies that transitions
either have no input restriction or, if a transition with delay time has an input restric-
tion, there must exist a transition with interval which connects the same
starting state with the fail state. For unit-delay edges we have to ensure that for all
input evaluations there exists a successor state. In general, the I/O-interval structures
are not restricted to reactive systems, but the examples studied later should be reactive.

For an easier understanding of the following case studies, we introduce a graphical
notation for I/O-IS in Fig. 2.4. The represent the inputs of the modeled sub-system,
and  denotes a function .

3 Specifying Real-Time Properties with CCTL
CCTL [11] is a temporal logic extending CTL with quantitative bounded temporal
operators. Two new temporal operators are introduced to make the specification of
timed properties easier. The syntax of CCTL is the following:

 (7)

where is an atomic proposition and and are time-
bounds. All interval operators can also be accompanied by a single time-bound only. In
this case the lower bound is set to zero by default. If no interval is specified, the lower
bound is implicitly set to zero and the upper bound is set to infinity. If the X-operator
has no time bound, it is implicitly set to one. The semantics of the logic is given as a
validation relation:

Definition 3.1. Given an IS  and a configuration .

Fig. 2.4. Graphical notations

g j 1+ s j i j 1+ v j, 1+,( )= v j 1 MaxTime s j i j,( )<+ i j 1+ C s j i j,( )∈
g j 1+ s j 1+ i j 1+ 0, ,( )= t s j s j 1+ i j 1+,( , )= T∈ i j I I t( )∈ v j 1 I t( )∈+

δ
1 δ 1–,[ ]

ai
f f PI

n IB→:

s2s1

s2s1

a unit delay transition

a timed transition with no

a timed transition with input restrictionf a1 … an, ,( )
f a1 … an, ,( ) δ,

δ

s2s1

fail
input restriction

ϕ

p | ϕ¬ | ϕ ϕ∧ | ϕ ϕ∨ | ϕ ϕ→ | ϕ ϕ↔
| EX a[ ]ϕ | EF a b,[ ]ϕ | EG a b,[ ]ϕ | E ϕ U a b,[ ]ϕ( ) | E ϕ C a[ ]ϕ( ) | E ϕ S a[ ]ϕ( )

| AX a[ ]ϕ | AF a b,[ ]ϕ | AG a b,[ ]ϕ | A ϕ U a b,[ ]ϕ( ) | A ϕ C a[ ]ϕ( ) | A ϕ S a[ ]ϕ( )

:=

p P∈ a IN∈ b IN ∞{ }∪∈

ℑ P S T L I, , , ,( )= g0 s v,( )= G∈
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 (8)

 (9)

The other operators may be derived by the defined ones, e.g.:

 (10)

Examples for the use of CCTL may be found in the case studies.

4 Composition and Model Checking
Model checking as described in [8] works on exactly one IS, but real-life systems are
usually described modular by many interacting components. In order to make model
checking applicable to networks of communicating components, it is necessary to
compute the product structure of all submodules. This product-computation is called
composition.

Due to space limitations we do not describe the composition algorithms in detail.
The principal idea is to define a reduction operation ( ) on KS which replaces
adjacent stutter states by timed edges. With this operation we are able to define the
composition by:

 (11)

The algorithms described in [11] works as follows:

1. expand all modules and substitute their input variables by the connected outputs
2. compose the expanded structures
3. reduce the composition KS

In order to avoid the computation of the complete unit-delay composition structure,
Step 2 and Step 3 may be performed simultaneously by incrementally adding only the
reachable transitions.

g0|= p :⇔ p L s( )∈

g0|= ϕ¬ :⇔ not g0|=ϕ

g0|= ϕ ψ∧( ) :⇔ g0|=ϕ and g0|=ψ

g0|=EG a b,[ ]ϕ :⇔ there ex. a run r g0 g1 …, ,( ) s.t.=

for all a i b holds≤ ≤ gi|=ϕ

g0|=E ϕ U a b,[ ]ψ( ) :⇔ there ex. a run r g0 g1 …, ,( ) and an a i b s.t.≤ ≤=

gi|=ψ and for all j i holds g j|=ϕ<

g0|=E ϕ C a[ ]ψ( ) :⇔ there ex. a run r g0 g1 …, ,( ) s.t.=

if for all i a holds gi|=ϕ then ga|=ψ<

g0|=E ϕ S a[ ]ψ( ) :⇔ there ex. a run r g0 g1 …, ,( ) s.t.=

for all i a holds gi|=ϕ and ga|=ψ<

EF a b,[ ]ϕ ≡ E true U a b,[ ]ϕ( )

A ϕ C a[ ]ψ( ) ≡ E¬ ϕ S a[ ] ψ¬( )

A ϕ S a[ ]ψ( ) ≡ E¬ ϕ C a[ ] ψ¬( )

reduce

ℑ1 ||ℑ2 reduce expand ℑ1( ) || expand ℑ2( )( ):=
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Since we adapt the expansion to I/O-ISs, the composition algorithms are also appli-
cable if we work with closed systems, where every free variable is bounded by a mod-
ule. After composition, the efficient model checking algorithms for IS may be used for
verification. These algorithms are described in detail in [8]. Composition as well as the
model checking algorithms use the symbolic representation of state sets and transition
relations with MTBDDs during computation.

5 Case Studies
In this section, we show the flexibility of our approach to model real-time systems. We
have chosen three systems out of very different areas and on different levels of abstrac-
tion. This section shows, that we do not necessarily need timed automata to represent
complex real-time systems.

5.1 Modeling Hardware with Time Delays

A first class of real-time systems
are digital hardware circuits
with delay times. These circuits
are composed by digital gates
like AND gates or flipflops, but
they have a specific timing
behavior. Impulses on the inputs
which are shorter than the delay
time of a gate are suppressed.
Only if an impulse stays constant at least for the delay time, the gate may change its
outputs. For modeling flipflops, we assume a setup and a hold time. If the input signals
violate these time-constraints, the flipflop remains in its actual state. As an easy exam-
ple we choose the single-pulser circuit [12] which is shown in Fig. 5.1. Figure 5.2
shows the basic gates (initial states are bold). For modeling the AND gate, input sensi-

tive edges have been used: If the system starts in the state high, and the inputs fulfil
for time units then it changes to the state low. If the inputs fulfill

before time units are passed, the structure remains in the state high. Here, I/

Fig. 5.2. Basic gates with input , clock  and delay time  resp. setup  and hold

Fig. 5.1. The circuit of the single-pulser
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a δ,

low high

a1 a2∧ δ,
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a
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–
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O-IS allow a very clear and compact modeling of timing constraints and communica-
tion behavior.

The clock generator is modeled by an I/O-IS with two states (high and low) which
toggles between both states every cycle-time. The environment is either a human
pressing the button (which should be single pulsed) or it’s a bouncing pulse.

The specification checks that an output signal appears if the input stays high long
enough:

 (12)

The following specification verifies that the output stays high for one cycle period and
then changes to low for a further cycle and afterwards rests low until the input becomes
high:

 (13)

5.2 Modeling a Production Automation Systems

The production cell is a case study
to evaluate different formal meth-
ods for verification [13]. A sche-
matic deposition of the production
cell is shown in Fig. 5.3. A feed
belt moves work pieces to the ele-
vation rotary table. This table lifts
the pieces to the robot arm 1. The
robot arm 1 moves the work pieces
to the press, where robot arm 2
removes them after the work has
performed. Robot arm 2 drops the work pieces over the deposit belt. The robot has two
arms to gain a maximal performance of the press.

Modeling the feed belt (FB, Fig. 5.4):
The FB delivers the cell with work pieces
(wp) every or seconds (state
feed). If the wp is moved to the end of the
belt (state work piece present) the belt
stops rotating until the signal raises.
Then it shifts the wp to the elevating
rotary table. If the table is not in the right
position, the wp falls to the ground or
blocks the table (state fail). This action
takes  seconds for completion

Modeling the elevating rotary table (ERT, Fig. 5.5): The ERT has a belt for loading
wps, which starts rotating by a rising signal. The signal makes the ERT
moving and rotating from the low loading position to the high unloading position (and

spec1 AG Env.out¬ EX A Env.out C 2δc δh+[ ]AF δa δh–[ ]And .out( )( )→( ):=

spec2 AG And .out¬ EX And .out A And .out C 2δc δn+[ ]tmp1( )→( )→( ):=

tmp1 AG 2δc 1–[ ] And .out¬ A And .out¬( )UEnv.out( )∧:=

Fig. 5.3. Schematic disposition of the production cell

feed belt

deposit belt

press

elevating
rotary table

robot

Fig. 5.4. I/O-IS modeling the feed belt

feed work piece
present

ERT _load δ, reload next

reloadfail

next¬

δmin δ, maxδmin δmax

next

δreload

load mov
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vice versa). The signal ( ) indicates that a wp is picked up (dropped down)
by the robot arm 1. The signal is a combination of many signals, the right robot
rotary table position, the out position of the arm, the empty signal of the arm and the
magnet on signal of the controller.

The robot is modeled by three separate modules, the two arms (RA, Fig. 5.6) and the
robot rotary table (RRT, Fig. 5.7). A RA may be empty or full (a wp is hanging on
the RA) and it may be extended (out) or retracted (in). The fail state indicates that the
wp falls to the ground. The RRT has three positions: unload ERT (UE) unload press
(UP) and drop wp (DW). Every movement between these positions is possible.

Modeling the press (P, Fig. 5.8): The P has three positions: low for unloading wps by
RA2, mid for loading wps by RA1 and press. The signal ( ) makes the press

Fig. 5.5. I/O-IS modeling the elevation rotary table

Fig. 5.6. I/O-IS modeling the robot arm
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to move to the next higher (lower) position. The and signals are connected
with the RAs and the RRT.

The deposit belt is not modeled by a separate module, it is assumed that the belt is
always running. If the RA 2 drops a wp over the deposit belt, it is transported.

The controlling unit is a synchronous FSM described with an output and a transition
function. We assume a sampling rate of 5ms for the external signals. The controller
manages the correct interaction between all modules.

The checked specifications check time bounds for the arrival of the first pressed wp, or
the cycle time of pressed wps. It is also shown that 4 wps may stay in the production
cell, but not five. Also some wait times for the wps are shown.

Fig. 5.7. I/O-IS modeling the robot rotary table

Fig. 5.8. I/O-IS modeling the press
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5.3 Modeling a Bus Protocol

The next example is the arbitration mechanism of a bus protocol. We modeled the
J1850 protocol arbitration [14] which is used in on- and off-road vehicles. The proto-
col is a CSMA/CR protocol. Every node listens to the bus before sending (carrier
sense, CS). If the bus is free for a certain amount of time, the node starts sending. It
may happen that two or more nodes simultaneously start sending (multiple access,
MA). Therefore, while sending, every node listens to the bus and compares the
received signals to the send signals. If they divide, it looses arbitration (collision reso-
lution, CR) and waits until the bus is free again. A sender distinguishes between two
sending modes, a passive and an active mode. Active signals override passive signals
on the bus. Succeeding bits are alternately send active and passive. The bits to be send
are encoded by a variable pulse width: a passive zero has a pulse width of , a
passive one bit takes , an active zero bit takes and an active one bit
takes . The bus is simply the union of all actively send signals. The arbitration
is a bit-by-bit arbitration, since a (passive/active) zero shadows a one bit. Before send-
ing the first bit, the nodes send an SOF (start of frame) signal, which is active and takes

. In Fig. 5.9 some examples of arbitration are shown. We assume an exact
frame length of 8 bits. After sending the last bit, the sender sends a passive signal of

, the end of frame (EOF) signal.

One bus node is modeled by two sub-modules: a sender/receiver and a counter. Ini-
tially, all modules are in their initial states. If the node decides to send (indeterministi-
cally) the sender/receiver listens to the bus. If the bus stays low for time units, the
module changes to the SOF state. The counter is triggered by the continue high/low
states of the sender. In the initial state, the counter module sends the signal.
After sending the SOF signal, the sender sends alternately passive and active one and
zero bits. If the bus becomes active while sending a passive bit, the sender/receiver
changes to the CS state and tries sending again later.

6 Experimental Results
In this section we compare the MTBDD model checking approach against an ROBDD
approach which uses the complete expanded unit-delay transition relation for verifica-
tion. Both algorithms prove the same formulas, only the representation and the model
checking techniques are different. For the ROBDD approach we use our unit-delay
model checker which uses the same BDD package as the MTBDD approach.

Fig. 5.9. Some examples of arbitration
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Both algorithms start with the same description of the networks of I/O-ISs and expand
these descriptions to unit-delay structures. The MTBDD approach then performs the
IS composition [11]. Afterwards it uses the algorithms presented in [8] for model
checking. The ROBDD approach preforms standard product composition on Kripke
structures and then checks the resulting Kripke structure against the same specifica-
tions.

Table 1 shows the number of ROBDD respective MTBDD nodes for the three case
studies presented in section 5. The J1850 example contains three bus nodes.The max
delay column indicates the maximal delay times used in the models. The ROBDD col-
umn shows the number of nodes necessary for the corresponding Kripke structure. The
MTBDD column is divided into three sub columns, the first one shows the number of
MTBDD nodes computed by the composition algorithm, the second and the third col-
umn shows the number of MTBDD nodes after applying a minimization algorithm
(reencoding, minimal path) presented in [11]. The reencode algorithm reduces the
number of MTBDD variables encoding the clock values (introduced by the expansion
step) by substituting these encodings by new ones with a minimal number of encoding
variables. The minpath algorithm adds unreachable states to the state space in the
MTBDD representation to shrink the number of MTBDD nodes from the root to the
leaves. Both algorithms do not affect the behavior of the system.

Fig. 5.10. Two submodules modeling one bus node
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Table 2 compares the run-times and the memory usage of the MTBDD approach
against the ROBDD approach.

7 Conclusion
In this paper we have presented a new modeling formalism (I/O-interval structure)
which is well suited for many real-time systems of different application areas and
abstraction levels. The formalism extends interval structures by a proper communica-
tion method based on signal communication between modules. This technique over-
comes the problem of splited edges appearing in interval structures while introducing
free input variables.

On the other hand, this signal-based communication allows a natural modeling of
hardware systems, and allows an easy combination of timed systems and synchronous
controllers. This formalism leads to a compact model representation of real-time sys-
tems with MTBDDs. Moreover, after composing I/O-interval structures, the efficient
model checking algorithms working on MTBDDs are applicable to the modeled sys-
tems.

Table 1. BDD nodes comparison

max ROBDD MTBDD nodes

delay nodes no min. reenc. minp.

single pulser 500 27,691 4,176 1,546 1,917

production cell 4,000 1,972,238 69,003 -a 18,999

J1850 300 350,358 76,610 389,478 50,301

a. memory exceeded 500MB due to a bad variable ordering required for this algorithm

Table 2. run-time and memory usage comparison

com-
plete

compo-
sition

minimi-
zation

model
checking

memory
(MByte)

single-pulser

MTBDD-approach 15.77 14.83 0.43 0.46 4.59

ROBDD-approach 11.59 8.84 - 2.56 5.23

production cell

MTBDD-approach 39:38 38:01 00:18 01:17 19.22

ROBDD-approach 54:43 27:07 - 27:20 177.6

J1850 bus arbitration

MTBDD-approach 05:06 00:37 00:09 04:19 22.2

ROBDD-approach 248:28 01:07 - 247:19 78.2

278 Jürgen Ruf and Thomas Kropf



References
[1] R. Alur and D. Dill. Automata for Modeling Real-Time Systems. In International Colloqui-

um on Automata, Languages and Programming, LNCS, NY, 1990. Springer-Verlag.
[2] R. Alur, C. Courcoubetics, and D. Dill. Model Checking for Real-Time Systems. In Sympo-

sium on Logic in Computer Science, Washington, D.C., 1990. IEEE Computer Society
Press.

[3] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking for Real-
Time Systems. In IEEE Symposium on Logic in Computer Science (LICS), pages 394–406,
Santa-Cruz, California, June 1992. IEEE Computer Scienty Press.

[4] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in the symbolic verification
of timed automata. In O. Grumberg, editor, Conference on Computer Aided Verification
(CAV), volume 1254 of LNCS, pages 179–190. Springer Verlag, June 1997.

[5] S. Campos and E. Clarke. Real-Time Symbolic Model Checking for Discrete Time Models.
In T. Rus and C. Rattray, editors, Theories and Experiences for Real-Time System Develp-
ment, AMAST Series in Computing. AMAST Series in Computing, May 1994.

[6] J. Frößl, J. Gerlach, and T. Kropf. An Efficient Algorithm for Real-Time Model Checking.
In European Design and Test Conference (EDTC), pages 15–21, Paris, France, March 1996.
IEEE Computer Society Press (Los Alamitos, California).

[7] J. Ruf and T. Kropf. Using MTBDDs for discrete timed symbolic model checking. Multi-
ple-Valued Logic – An International Journal, 1998. Special Issue on Decision Diagrams,
Gordon and Breach.

[8] J. Ruf and T. Kropf. Symbolic model checking for a discrete clocked temporal logic with
intervals. In Conference on Correct Hardware Design and Verification Methods
(CHARME), pages 146–166, Montreal, Canada, October 1997. Chapman and Hall.

[9] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Algebraic
Decision Diagrams and Their Applications. In IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 188–191, Santa Clara, California, November
1993. ACM/IEEE, IEEE Computer Society Press.

[10] E. Clarke, K. McMillian, X. Zhao, M. Fujita, and J.-Y. Yang. Spectral Transforms for large
Boolean Functions with Application to Technologie Mapping. In ACM/IEEE Design Auto-
mation Conference (DAC), pages 54–60, Dallas, TX, June 1993.

[11] J. Ruf and T. Kropf. Using MTBDDs for composition and model checking of real-time sy-
stems. In FMCAD 1998. Springer, November 1998.

[12] S. Johnson, P. Miner, and A. Camilleri. Studies of the single pulser in various reasoning sy-
stems. In International Conference on Theorem Provers in Circuit Design (TPCD), volume
901 of LNCS, Bad Herrenalb, Germany, September 1994. Springer-Verlag, 1995.

[13] C. Lewerentz and T. Lindner, editors. Formal Development of Reactive Systems - Case Stu-
dy Production Cell, number 891 in LNCS. Springer, 1995.

[14] SAE. J1850 class B data communication network interface. The Engeneering Society For
Advancing Mobility Land Sea Air and Space, October 1995.

279Modeling and Checking Networks of Communicating Real-Time Processes            


	Introduction
	Using Structures for Modeling System Behavior
	Interval Structures
	Interval Structures with Communication

	Specifying Real-Time Properties with CCTL
	Composition and Model Checking
	Case Studies
	Modeling Hardware with Time Delays
	Modeling a Production Automation Systems
	Modeling a Bus Protocol

	Experimental Results
	Conclusion
	References

