Skip to main content

Using PVM for Distributed Logic Minimization in a Network of Computers

  • Conference paper
  • First Online:
Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 1999)

Abstract

The implementation of switching functions by using the AND and EXOR primitives makes it possible to manufacture circuits which are easier and faster to test.This paper describes a parallel procedure that accelerates the execution of an AND-EXOR logic minimization procedure previously proposed. It is based on the use of Simulated Annealing (SA) and rewrite rules. The parallel procedure presented uses multiple Markov chains with periodic exchange of information to distribute the SA process, on which the sequential AND-EXOR minimization procedure is based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sasao, T.: Representation of logic functions using EXOR operators. Proc. IFIP WG 10.5 (Reed-Muller’ 95). Makuhari, Chiba (Japan), (1995), 11–20.

    Google Scholar 

  2. Drechsler, R., and Becker, B.: Sympathy: Fast Exact Minimization of Fixed Polarity Reed-Muller Expression for Symmetric Functions. IEEE Trans. on Computer-Aided Design, 16,1 (1997), 1–5.

    Article  Google Scholar 

  3. Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co. San Francisco. (1979).

    MATH  Google Scholar 

  4. Parrilla, L., Ortega, J., and Lloris, A.: Non-Deterministic AND-EXOR Minimization by Using Rewrite Rules and Simulated Annealing. IEE Procedings Computer and Digital Techniques. 146,1, (1999), 1–8.

    Article  Google Scholar 

  5. Brand, D., and Sasao, T.: Minimization of AND-EXOR Expressions Using Rewrite Rules. IEEE Trans. on Computers, 42, 5 (1993), 568–576.

    Article  Google Scholar 

  6. Parrilla, L., Ortega, J., and Lloris, A.: Using simulated annealing in the minimisation of AND-EXOR functions. Electronic Letters, 30,22 (1994), 1838–1839.

    Article  Google Scholar 

  7. Geist, A., Beguelin, A., Pongarra, J., Jiang, W., Mancheck, R., and Sunderam, V.: PVM: Parallel Virtual Machine. The MIT Press, (1994).

    Google Scholar 

  8. Aarts, E., and Korts, J.: Simulated Annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing,. Wiley & Sons, (1990).

    Google Scholar 

  9. Banerjee, P., Jones, M.H., and Sargent, J.S.: Parallel simulated annealing algorithms for standard cell placement on hypercube multiprocessors IEEE Trans. Parallel and Distributed Systems, 1, (1990), 91–106.

    Article  Google Scholar 

  10. Distante, F., Piuri, V.: Optimum behavioral test procedure for VLSI devices: a simulated annealing approach Proc. IEEE Int. Conf. on Computer Design, Port Chester, (1986), 31–35.

    Google Scholar 

  11. Leong, H.W.: A new algorithm for gate matrix layout. Proc. IEEE Int. Conf. on Computer-Aided Design, Santa Clara, (1986), 316–319.

    Google Scholar 

  12. Abramson, D.: A very high speed architecture for Simulated Annealing IEEE Computer, 25,5 (1992), 27–36.

    Google Scholar 

  13. Roussel-Ragot, P., and Dreyfus, G.: A Problem Independent Parallel Implementation of Simulated Annealing: Models and Experiments IEEE Trans. on Computer-Aided Design, 9,8 (1990), 827–835.

    Article  Google Scholar 

  14. Witte, E.E., Chamberlain, R.D., and Franklin, M.A.: Parallel simulated annealing using speculative computation. IEEE Trans. on Parallel and Distributed Systems, 2,4 (April 1991), 483–494.

    Article  Google Scholar 

  15. Shon, A.: Parallel N-ary Speculative Computation of Simulated Annealing. IEEE Trans. on Parallel and Distributed Systems, 6,10 (1995), 997–1005.

    Article  Google Scholar 

  16. Lee, S.-Y. and Lee, K.G.: Synchronous and Asynchronous Parallel Simulated Annealing with Multiple Markov Chains. IEEE Trans. on PDS, 7,10 (1996), 993–1007.

    Google Scholar 

  17. Horowitz, E. and Zorat, A.: Divide and Conquer for Parallel Processing IEEE Trans. on Computers, C-32,6 (1983), 582–585.

    Article  Google Scholar 

  18. Yang, M.K., and Das, C.R.: Evaluation of Parallel Branch-and-Bound Algorithm on a Class of Multiprocessors IEEE Trans. on Parallel and Distrubuted Systems, 4,1 (1994), 74–86.

    Article  Google Scholar 

  19. Lloris, A., Gómez, J.F., and Román, R.: Entropic minimization of multiple-valued functions. In IEEE Proc. of the Int. Symp. on Multiple Valued Logic, (1993), 24–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parrilla, L., Ortega, J., Lloris, A. (1999). Using PVM for Distributed Logic Minimization in a Network of Computers. In: Dongarra, J., Luque, E., Margalef, T. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 1999. Lecture Notes in Computer Science, vol 1697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48158-3_67

Download citation

  • DOI: https://doi.org/10.1007/3-540-48158-3_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66549-6

  • Online ISBN: 978-3-540-48158-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics