Skip to main content

Defining Metrics for Conceptual Schema Evolution

  • Conference paper
  • First Online:
Database Schema Evolution and Meta-Modeling (DEMM 2000, FoMLaDO 2000)

Abstract

It is generally believed that a well-designed Conceptual Schema will remain stable over time. However, current literature rarely addresses how such stability should be observed and measured in the operational business environment with evolving information needs and database structures. This paper sets up a framework for stability of conceptual schemas and proceeds to develop a set of metrics from it. The metrics are based on straightforward measurements of conceptual features. The validity of the set of metrics is argued here from theory, operational validity may be demonstrated by a longitudinal case study into the evolution of conceptual schemas. The main contribution of this paper is the realization that the measurement of conceptual schema stability is an essential step for understanding and improving current theories and best-practices for designing high-quality schemas that will stand the test of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amikam A. On the automatic generation of internal schemata, Information Systems vol 10 no 1 [1985] 37–45

    Google Scholar 

  2. Andany J., Léonard M., Palisser C. Management of Schema Evolution in Databases, 17th Int. Conference on VLDB’91 Very Large Data Bases, Barcelona (Spain), Morgan Kaufmann, San Francisco [1991 09] 161–170

    Google Scholar 

  3. ANSI/X3/SPARC Study Group on Data Base Management Systems Interim Report, ACM SIGMOD Newsletter vol 7 no 2 [1975 02 08]

    Google Scholar 

  4. Basili V.R., Briand L., Melo W.L. A Validation of Object-Oriented Metrics as Quality Indicators, IEEE Transactions on Software Engineering vol 22 no 10 [1996 10] 751–761

    Article  Google Scholar 

  5. Batini C.W., Ceri S., Navathe S.B. Conceptual Database Design: An Entity-Relationship Approach, Benjamin/Cummings Publ. CA [1992]

    MATH  Google Scholar 

  6. Batini C.W., Di Battista G., Santucci G. Structuring primitives for a Dictionary of ER Data Schemas, IEEE Transactions on Software Engineering vol 19 no 4 [1993] 344–365

    Article  Google Scholar 

  7. Batra D., Antony S.R. Novice errors in Conceptual Database Design, European Journal of Information Systems vol 3 no 1 [1994] 57–69

    Article  Google Scholar 

  8. Batra D., Davis J.G. Conceptual data modelling in database design: similarities and differences between expert and novice designers, Int. Journal of Man-Machine Studies vol 37 [1992] 83–101

    Article  Google Scholar 

  9. Belady L.A., Lehman M.M. A model of large program development, IBM Systems Journal vol 15 no 3 [1976] 225–252

    Article  MATH  Google Scholar 

  10. Castano S., de Antonellis V., Zonta B. Classifying and Reusing Conceptual Schemas, ER’92 Entity-Relationship Approach, editors Pernul G., Tjoa A.M., Springer Verlag series LNCS 645 [1992 10] 121–138

    Chapter  Google Scholar 

  11. Chen P.-P., Ming-rui Li The lattice structure of entity sets, ER’86 Entity-Relationship Approach, editor Spaccapietra S. Elsevier Science Publ. North-Holland [1986] 217–229

    Google Scholar 

  12. Chidamber S.R., Kemerer C.F. A metrics suite for Object-Oriented Design, IEEE Transactions on Software Engineering vol 20 no 6 [1994 06] 476–493

    Article  Google Scholar 

  13. Claypool K.T., Rundensteiner E.A., Heineman G.T. Evolving the software of a Schema Evolution System, Database schema Evolution and Meta-Modeling — 9th Int.Workshop on Foundations and Models of Data and Objects (FOM-LADO/DEMM’00), editors Balsters H., de Brock B., Conrad S., Springer Verlag series LNCS 2065 [2001] 68–84

    Chapter  Google Scholar 

  14. Date C.J. An introduction to Database Systems, volume I, fourth edition, Addison-Wesley Publ. [1986]

    Google Scholar 

  15. Delen G.P.A.J., Looijen M. Beheer van Informatievoorziening, Cap Gemini Publishing Netherlands (isbn 90-7199650-6) [1992] (in Dutch)

    Google Scholar 

  16. de Troyer O. On Data Schema transformations, PhD thesis Tilburg University [1993 03]

    Google Scholar 

  17. Dittrich K.R., Gotthard W., Lockemann P.C. Complex entities for Engineering Applications, ER’86 Entity-Relationship Approach 1986 editor Spaccapietra S., Elsevier Science Publ. North-Holland [1986] 421–440

    Google Scholar 

  18. Dvorak J. Conceptual Entropy and its Effect on Class Hierarchies, Computer [1994] 59–63

    Google Scholar 

  19. Ebels E.J., Stegwee R.A. A Multiple Methodology Approach towards Information Architecture Specification, Proceedings of the’ 92 IRMA Int.Conference, Charleston SC, editor Khosrowpour [1992 05] 186–193

    Google Scholar 

  20. Etzkorn L., Davis C., Li W. A Practical look at the lack of cohesion in methods metric, JOOP Journal of OO Programming vol 11 no 5 [1998 09] 27–34

    Google Scholar 

  21. Ewald C.A., Orlowska M.E. A Procedural Approach to Schema Evolution, CAiSE’ 93 Advanced Information Systems Engineering, 5th Int.Conference Paris France, Springer Verlag series LNCS 685 [1993 06] 22–38

    Google Scholar 

  22. Feldman P., Miller D. Entity Model clustering: structuring a data model by abstraction, The Computer Journal vol 29 no 4 [1986] 348–360

    Article  Google Scholar 

  23. Ferrandina F., Meyer T., Zicari R., Ferran G., Madec J. Schema and database evolution in the O2 object database system, Proceedings of the 21st VLDB’95 Very Large Data Bases conference, Zurich, editors Dayal U., Gray P.M.D., Nishio S. [1995 09] 170–181

    Google Scholar 

  24. Gill G.K., Kemerer C.F. Cyclomatic complexity density and software maintenance productivity, IEEE Transactions on Software Engineering vol 17 no 12 [1991] 1284–1288

    Article  Google Scholar 

  25. Hainaut J.-L., Engelbert V. DBMAIN: a next-generation meta-CASE, Information Systems vol 24 no 2 [1999 04] 99–112

    Article  Google Scholar 

  26. Jensen O.G., Bohlen M.H. Evolving Relations, Database schema Evolution and Meta-Modeling — 9th Int.Workshop on Foundations and Models of Data and Objects (FOMLADO/DEMM’00), editors Balsters H., de Brock B., Conrad S., Springer Verlag series LNCS 2065 [2001] 115–131

    Google Scholar 

  27. Jianhua Zhu, Nassif R., Pankaj G., Drew P., Askelid B. Incorporating a model hierarchy into the ER paradigm, ER’91 Entity-Relationship Approach [1991] 75–88

    Google Scholar 

  28. Jones C. Software Metrics: good, bad, and missing, Computer vol 27 no 9 [1994 09] 98–100

    Article  Google Scholar 

  29. Jones M.C., Rundensteiner E.A. An Object Model and Algebra for the Implicit Unfolding of Hierarchical Structures [1999] (internet, downloaded on 2000-01-31)

    Google Scholar 

  30. Kesh S. Evaluating the quality of Entity Relationship models, Information & Software Technology vol 37 [1995] 681–689

    Article  Google Scholar 

  31. Lautemann S.-E. A propagation mechanism for populated schema versions, Proceedings of the IEEE Int. Conference on Data Engineering [1997 04] 67–78

    Google Scholar 

  32. Lederer A., Salmela H. Towards a theory of strategic information systems planning, J. of Strategic Information Systems vol 5 no 3 [1996 09] 237–253

    Article  Google Scholar 

  33. Lerner B.S., Habermann A.N. Beyond schema evolution to database reorganization, Proceedings of the ECOOP/OOPSLA’90 conference, SIGPLAN Notices vol 25 no 10 [1990 10] 67–76

    Article  Google Scholar 

  34. Lerner B.S. A Model for Compound Type Changes encountered in Schema Evolution, Technical Report 96-044 Univ Massachusetts [1996 06] (internet, downloaded on 2000.02.29)

    Google Scholar 

  35. Levitin A.V., Redman T.C. Quality dimensions of a conceptual view, Information Processing & Management vol 31 no 1 [1995] 81–88

    Google Scholar 

  36. Lindland O.I., Sindre G., Sølvberg A. Understanding Quality in Conceptual Modeling, IEEE Software [1994 03] 42–49

    Google Scholar 

  37. Marche S. Measuring the stability of data models, European J.of Information Systems, a publication of the Operational Research Society, vol 2 no 1 [1993] 37–47

    Article  Google Scholar 

  38. Mistelbauer H. Datenmodellverdichtung: Vom Projektdatenmodell zur Unternehmens-Datenarchitektur, Wirtschaftsinformatik vol 33 no 4 [1991 08] 289–299 (in german)

    Google Scholar 

  39. Pels H.J. Geïntegreerde informatiebanken: modulair ontwerp van het conceptuele schema, Stenfert Kroese Leiden NL [1988] (in dutch)

    Google Scholar 

  40. Peters R.J., Tamer Ozsu M. Reflection in a Uniform Behaviour Object Model, ER’93 Entity-Relationship Approach 1993, 12th Int.Conference Arlington (Texas), editors Elmasri, Kouramajian, Thalheim, Springer Verlag series LNCS 823 [1993 12] 34–45

    Chapter  Google Scholar 

  41. Peters R.J., Tamer Ozsu M. An axiomatic model of dynamic schema evolution in objectbase systems, ACM transactions on Database Systems vol 22 no 1 [1997 03] 75–114

    Article  Google Scholar 

  42. Proper H.A., van der Weide T.P. Towards a general theory for the evolution of application domains, Proc. Australasian Database Conference’93, editors Orlowska, Papazoglou, World Scientific [1993 02] 346–362

    Google Scholar 

  43. Roddick J.F, Craske N.G., Richards T.J. A Taxonomy for Schema Versioning Based on the Relational and Entity Relationship Models, ER’93 Entity-Relationship Approach, 12th Int.Conference Arlington (Texas), editors Elmasri, Kouramajian, Thalheim, Springer Verlag series LNCS 823 [1993 12] 137–148

    Chapter  Google Scholar 

  44. Sauter C. Ein Ansatz fur das Reverse Engineering relationaler Datenbanken, Wirtschaftsinformatik vol 37 no 3 [1995] 242–250 (in German)

    MathSciNet  Google Scholar 

  45. Schneidewind N.F. Methodology for Validating Software Metrics, IEEE Transactions on Software Engineering vol 18 no 5 [1992 05] 410–422

    Article  Google Scholar 

  46. Shanks G., Darke P. Understanding corporate data models, Information & Management vol 35 no 1 [1999] 19–30

    Article  Google Scholar 

  47. Sheth A., Kashyap V., So Far (schematically) Yet So Near (semantically), Proceedings of the IFIP WG2.6 DS-5 Conference, Lorne Australia [1992 11 16] 272–301

    Google Scholar 

  48. Sjøberg D. Quantifying Schema Evolution, Information & Software Technology vol 35 no 1 [1993 01] 35–44

    Article  Google Scholar 

  49. Storey V.C., Ullrich H., Sundaresan S. An Ontology for Database Design Automation, ER’97 Entity-Relationship Approach 1997, editors Embley, Goldstein, Springer Verlag series LNCS 1331 [1997] 2–15

    Google Scholar 

  50. Teorey T.J. Database Modeling & Design: The fundamental Principles, 2nd edition Morgan Kaufmann Publ. [1994]

    Google Scholar 

  51. Terrasse M.-N. A Modeling Approach to Meta-Evolution, Database schema Evolution and Meta-Modeling — 9th Int.Workshop on Foundations and Models of Data and Objects (FOMLADO/DEMM’00), editors Balsters H., de Brock B., Conrad S., Springer Verlag series LNCS 2065 [2001] 201–218

    Google Scholar 

  52. Urtado C., Oussalah C. Complex entity versioning at two granularity levels, Information Systems vol 23 no 3/4 [1998] 197–216

    Article  Google Scholar 

  53. Veldwijk R. Hoe rekbaar is flexibel, Database Magazine [1996] 38–43 (in dutch)

    Google Scholar 

  54. Wand Y., Monarchi D.E., Parsons J., Woo C.C. Theoretical foundations for conceptual modelling in information systems development, Decision Support Systems vol 15 [1995] 285–304

    Article  Google Scholar 

  55. Wedemeijer L. Semantic Change Patterns in the Conceptual Schema, ECDM’99 Advances in Conceptual Modeling, editors Chen, Embley, Kouloumdjian, Liddle, Roddick, Springer Verlag series LNCS 1727 [1999 11] 122–133

    Chapter  Google Scholar 

  56. Wedemeijer L. A Method to Ease Schema Evolution, IRMA’00 International Conference, Anchorage AK, [2000 05] 423–425

    Google Scholar 

  57. Wilmot R.B. Foreign keys decrease adaptability of database designs, Communications of the ACM vol 27 no 12 [1984 12] 1237–1243

    Article  Google Scholar 

  58. Zuse H. A Framework of Software Measurement, Walter de Gruyter Berlin, NewYork [1998]

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wedemeijer, L. (2001). Defining Metrics for Conceptual Schema Evolution. In: Balsters, H., de Brock, B., Conrad, S. (eds) Database Schema Evolution and Meta-Modeling. DEMM FoMLaDO 2000 2000. Lecture Notes in Computer Science, vol 2065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48196-6_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-48196-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42272-3

  • Online ISBN: 978-3-540-48196-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics