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1 Introduction 

Both in the database and algorithm communities, much attention has recently been 
given to the development of I/O-efficient data structures for indexing point data. A 
large number of data structures (or indexes) have been developed, reflecting the many 
different requirements put on such structures; small (often linear) size, efficient query 
of update bounds, capabilities of answering a wide variety of queries (mainly range 
and proximity queries), and simplicity. See recent surveys [19,3,43]. The proposed 
data structures can roughly be divided into two classes, namely practically used (and 
often heuristics based) structures, for which worst-case query performance guarantees 
can only be given (if at all) in the static case, and theoretically optimal dynamic struc­
tures, which have yet to be proven practically efficient. The first class of structures 
are often external versions of well-known simple internal memory structures. 

In this paper, we try to combine the advantages of the two classes of structures 
by developing a general mechanism for obtaining efficient external data structures 
from a general class of simple internal memory structures, such that the external 
structures are efficient in the dynamic case. Part of our result is a new general index 
construction (bulk loading) technique which is of independent interest. 

1.1 I / O m o d e l a n d p r e v i o u s resul ts 

In this paper we analyze the I/O and space complexity of data structures in the 
standard two-level I/O model defined by the following parameters [2,28]: N, the 
number of input elements, M, the number of elements that fit in main memory, and B, 
the number of elements that fit in one disk block, where /V > M and 1 < B < M/2. 
One I/O operation (or simply I/O) in this model consists of reading one block from 
disk into main memory or writing one block from main memory to disk. The measure 
of performance of an algorithm or data structure is the number of I/O operations it 
performs and the maximum disk space (blocks) it uses. For notational simplicity, we 
use n = N/B and m = M/B to denote the input size and memory size in units of 
data blocks. 

Aggarwal and Vitter [2] developed optimal algorithms for sorting a set of N el­
ements in external memory, in 0(n\ogmn) I/Os. Subsequently, I/O-efficient algo­
rithms have been developed for large number of problems. Recently, many efficient 
(and often optimal) data structures have also been developed. Ideally, an exter­
nal data structure should use linear space, 0(N/B) blocks, and answer a query in 
0 ( l o g B N + K/B) I/Os, where K is the number of elements reported by the query. 
These bounds are obtained by the B-tree data structure for one-dimensional range 
searching [9,15]. For two-dimensional range searching, 0(</n + K/B) is the best ob­
tainable query bound with linear space [40]. Structures that use more than linear 
space are generally infeasible in practical applications. Refer to surveys by Vitter [42] 
and Arge [3] for references. 

One main challenge in the design of external indexing data structures is obtaining 
good query performance in a dynamic environment. Early structures, such as the grid 
file [32], the various quad-trees [36,33], and the fcdB-tree [34], were poorly equipped 
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to handle dynamic updates. Later structures tried to employ various (heuristic) tech­
niques to preserve the query performance and space usage under dynamic updates. 
They include the LSD-tree [23], the buddy tree [37], the hB-tree [31], and R-tree 
variants [22,20,38,10,25]. These data structures are often the methods of choice in 
practical applications, because they use linear space and reportedly perform well in 
practice. However, in a highly dynamic environment they are all very query subop-
timal in the worst-case. The hB-tree (or holey brick tree), for example, is based on 
the statically query-efficient fedB-tree, which combines the spatial query capabilities 
of the fed-tree [11] with the I/O-efficiency of the B-tree. While nodes in a fedB-tree 
represent rectangular regions of the space, nodes in an hB-tree represent so-called 
"holey bricks", or rectangles from which smaller rectangles have been cut out. This 
allows for the underlying B-tree to be maintained during updates (insertions). Un­
fortunately, a similar claim cannot be made about the underlying fed-tree and thus 
good query-efficiency cannot be maintained. 

Recently, a number of theoretical worst-case efficient dynamic data structures have 
been developed. The cross-tree [21] and the O-tree [27] for example, both use linear-
space, answer range queries in the optimal number of I/Os, and they can be updated 
I/O-efEciently. However, their practical efficiency has not been investigated, probably 
because a careful theoretical analysis shows that their average query performance is 
close to the worst-case performance. In contrast, the average case performance of the 
fed-tree (and the structures based on it) is much better than the worst case perfor­
mance [39]. Other linear-space and query and update optimal data structures have 
been designed for special types of range queries, like 2- or 3-sided two-dimensional 
range queries [7,5,26,40] and halfspace range queries [1]. The practical efficiency of 
these structures still has to be established. 

In the database literature, the term bulk loading is often used to refer to the 
process of constructing an external data structure. Since bulk loading an index us­
ing repeated insertion is often highly non-efficient [4], the development of specialized 
bulk loading algorithms has received a lot of attention recently. Most work on bulk 
loading has concentrated on the R-tree [35,24,17,30,41,13,16]. Although not opti­
mal, relatively efficient algorithms can often be obtained by constructing an index 
level-by-level. 

1.2 O u r resul ts . 

In Section 2 of this paper, we define a class of linear-space trees for indexing a set 
of points in M4. These so-called wp-tree.s generalize known internal memory data 
structures like fed-trees, quad-trees, BBD-trees [8], and BAR trees [18]. We also show 
how a wp-tree can be efficiently mapped to external memory, that is, how it can 
be stored in external memory using O(n) blocks such that a root-leaf path can be 
traversed I/O-efficiently. 

In Section 3, we then design a general technique for bulk loading wp-trees. Using 
this technique we obtain the first I/O-optimal bulk loading algorithms for fed-trees, 
pseudo-quad-trees, BBD-trees and BAR-trees. Our algorithms use 0 (n log T O n) I/Os 
whereas previously know algorithms use at least D(nlog2 n) I/Os. 
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Finally, in Section 4 we describe several techniques for making a wp-tree dynamic. 
Our techniques are based on dynamization methods developed for internal memory 
(partial rebuilding and the logarithmic method) but adapted for external memory. 
Together with our bulk loading technique, this allows us to obtain provably I/O-
efficient dynamic versions of structures like the fed-trees, pseudo-quad-trees, BBD-
trees, and BAR-trees. Previously, no such structures were known. 

2 The wp-tree framework 

In this section we present the class of trees on which our framework can be applied. 
To simplify the presentation, we develop this framework in K 2 . All the results can 
easily be generalized to any dimension. 

D e f i n i t i o n 21 A (f3,5, re) weight-balanced partitioning tree (or wp-tree) on a set S of 
N points in K2 satisfies the following constraints: 

1. Each node v corresponds to a region rv in M 2, called the extent of v. The extent 
of the root node is M2: 

2. Each non-leaf node v has ji > 2 children corresponding to a partition of rv into 
0 disjoint regions: 

3. Each leaf node v stores exactly one point p from S inside rv: 
4. Let w(v) be the weight o( node v, defined as the number of data points stored in the 

subtree rooted at v and let be the re'th ancestor of v. Then w(v) < Sw(v^), 
for all nodes v and . 

The wp-tree generalizes a number of internal memory data structures used to in­
dex point data sets: fed-trees [11], pseudo-quad-trees [33], BBD-trees [8], and BAR-
trees [18] are all wp-trees. 

The weight condition insures that wp-trees are balanced. Intuitively, it says that 
only a constant number of partition steps (re) is required to obtain regions containing 
a fraction (<$) of the points each. 

L e m m a 22 The height of a wp-tree is at most re(log1</(j N + 1) — 1. 

We first show how to store a wp-tree on disk using 0(n) disk blocks so that a root-
leaf path can be traversed I/O-efficiently. Starting with the root v we fill disk blocks 
with the subtree obtained by performing a breadth-first search traversal from v until 
we have traversed at most B nodes—refer to Figure 1. We recursively block the tree 
starting in the leaves of this subtree. The blocked wp-tree obtained in this way can 
be viewed as a fanout 0(B) tree with each disk block corresponding to a node. We 
call these nodes block nodes in order to differentiate them from wp-tree nodes. The 
leaf block nodes of the blocked wp-tree are potentially underfull (contain less than B 
wp-tree nodes), and thus O(N) blocks are needed to block the tree in the worst case. 
To alleviate this problem, we let certain block nodes share the same disk block. More 
precisely, if v is a non-leaf block node, we reorganize all u's children that are leaf 
block nodes, such that at most one disk block is non-full. This way we only use 0(n) 
disk blocks and since each non-leaf block node contains a subtree of height 0( log 2 B) 
we obtain the following. 
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L e m m a 23 A blocked wp-tree T is a multi-way tree of height 0 ( l o g B N). T can be 
stored using 0(n) blocks. 

2.1 T h e r e s t r i c t e d w p - t r e e 

The definition of a wp-tree emphasizes the structure of the tree more than the geome­
try of the partitioning. The dynamization methods that will be presented in Section 4 
can be applied to any wp-tree. However, without information about the partitioning 
used, we cannot quantify the update and query I/O-bounds obtained using these 
methods. Therefore we now restrict the definition of a wp-tree by adding geomtric 
constraints on the extent of a node and the partitioning method used. The resulting 
restricted wp-tree is general enough to encompass all data structures that interest us, 
and at the same time is restrictive enough to alow us to prove general update, bulk 
loading, and query bounds. 

D e f i n i t i o n 24 A restricted (/?, S, re) wp-tree is a (/?, S, re) wp-tree in which each node 
v satisfies the following constraints: 

1. The extent of v is the set theoretic difference of two convex polygons, rv = bo \ hi. 
The inner polygon hi must be inside the outer polygon bo, and the orientations 
of edges forming bi and bo must be taken from a constant set of directions D. 

2. The extents of the f3 children of v are obtained from rv by applying the following 
cuts a constant number of times: 

(a) A geometric cut I. A geometric cut is a line I, which has to be along a direction 
e £ D and should not intersect 6j. 

(b) A rank cut (e,a). A rank cut is a line I along direction e, where e £ D. Let V 
be the line along e such that aw(v) of the w(v) points stored in the subtree 
rooted in v is to the left of V. Then I is the closest line to V not intersecting 
the interior of 6j. 

(c) A rectangle cut. A rectangle cut can be applied to v only if bi and bo are 
both fat rectangles (i.e., the ratio between the longest and shortest sides is at 
most 3). Then the cut is a fat rectangle b' such that 6j C b' C bo and both 
b' \ bi and bo \ b' contain at most 2w(v)/3 points. 

2.2 E x a m p l e s o f r e s t r i c t e d w p - t r e e s 

Like wp-trees, restricted wp-trees generalize internal memory data structures like 
fed-trees, BBD-trees, pseudo-quad-trees and BAR-trees. Below we further discuss fed-
trees and BBD-trees. In the full paper we show how pseudo-quad-trees and BAR-trees 
are also captured by the restricted wp-tree definition. 

T h e fed-tree. Introduced by Bentley [11], the fed-tree is a classical structure for 
answering range (or window) queries. It is a binary tree that represents a recursive 
decomposition of the space into subspaces by means of hyperplanes orthogonal to the 
coordinate axes. In M 2, the partition is by axes-orthogonal lines—refer to Figure 1. 
Each partition line divides the point-set into two equal subsets. On even levels of 
the tree the line is orthogonal to the x-axis, while on odd levels it is orthogonal to 
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Fig. 1. fed-tree partitioning. The values shown are the coordinates of the 
dividers. Points are stored in leaves and disk blocks are outlined with 
dashed lines. 

the y-axis. These partitions are rank cuts (e, 1/2), where e is orthogonal to the x- or 
j/-axis. Thus, it is easy to see that the fed-tree is a restricted (2,1/2,1) wp-tree. 

T h e B B D - t r e e The balanced box decomposition tree, or BBD-tree, was introduced by 
Arya et al [8] for answering approximate nearest neighbor queries. Like the fed-tree, 
the BBD-tree is a binary tree representing a recursive decomposition of the space into 
subspaces. The region associated with a BBD-tree node is the set theoretic difference 
of two rectangles, 6j and bo (with 6j included in bo), where the rectangles are fat, 
meaning that the ratio between the longest and shortest sides is bounded. 

Split Shrink 

low child high child b O outer child 

b inner child 
biim 

(a) (b) 

Fig. 2. BBD-tree partitions, (a) Split node, (b) Shrink node. 

More precisely, a BBD-tree consists of two types of nodes: split nodes and shrink 
nodes. In a split node, the partition is done using an axis-orthogonal line that cuts the 
longest side of bo so that the resulting rectangles are fat and 6j lies entirely inside 
one of them—refer to Figure 2(a). In a shrink node v, the partition is done using a 
box rather than a line. This box b lies inside bo and determines the extent of the two 
children: b \ 6j is the extent of the inner child and bo \ b is the extent of the outer 
child—refer to Figure 2(b). While split nodes reduce the geometric size, the box b 
used in shrink nodes is chosen so as to reduce the number of points by a factor of 1.5. 
By alternating split nodes and shrink nodes in the tree, both the geometric size and 
the number of points associated with each node decrease exponentially as we descend 
a constant number of levels in the BBD-tree (see [8] for details). It is easy to see that 
the split node uses a geometric cut, and the shrink node uses a rectangle cut. In the 
full paper we show that a BBD-tree is a restricted (2,2/3,3) wp-tree. 

5 



3 Bulk loading restricted wp-trees 

In this section we describe an optimal algorithm for bulk loading (constructing) a 
blocked restricted wp-tree. 

It is natural to bulk load a wp-tree using a top-down approach. For example, 
to construct a fed-tree on N points in K2 we first find the point with the median 
iB-coordinate in 0(n) I/Os. We then distribute the points into two sets based on this 
point and proceed recursively in each set, alternating between using the median x-
coordinate and y-coordinate to define the distribution. This way, each level of the 
wp-tree is constructed in a linear number of I/Os, so in total we use 0 (n log 2 n) 
I/Os to bulk load the tree. This bound is a factor of log 2 m bigger than the optimal 
0 (n log T O n) bound (the sorting bound). 

Intuitively, we need to construct 0( log 2 m) levels of the wp-tree—instead of just 
one—in a linear number of I/Os in order to obtain this bound. Doing so seems 
difficult because of the way the points are alternately split by x- and y-coordinates. 
Nevertheless, below we show how to bulk load a blocked restricted wp-tree, and thus 
a fed-tree, in 0 (n log T O n) I/Os. 

To simplify the presentation, we present our restricted wp-tree bulk loading al­
gorithm only for the two-dimensional case and when f3 = 2 and D contains only the 
two directions orthogonal to the coordinate axes. The details of the general algorithm 
will be given in the full paper. 

Let S be a set of N points in M 2. The first step in constructing a blocked wp-
tree for S is to sort the N points twice: once according to their x-coordinate, and 
once according to their y-coordinate. Call the resulting sets Sx and Sy, respectively. 
Next the recursive procedure B u l k - l o a d is called with Sx and Sy as input sets. 
B u l k - l o a d builds a subtree of height 0( log 2 m) in each recursive call, until the input 
fits in internal memory. The main idea in the algorithm is to impose a grid on the 
set of input points. The grid is computed so that it can be used as an estimate of 
the point distribution, allowing partitions to be computed without reading all the 
points. More precisely, B u l k - l o a d starts by dividing the current region (initially M2) 
into t = 0(min{m, s/M}) vertical slabs and t horizontal slabs, each containing N/t 
points. These slabs form a t x t grid. The number of points in each grid cell is then 
computed and stored in a matrix A, which is kept in memory. All three types of cuts 
can now be computed fast using A. A rank cut (e,a) for a node v, for example, is 
computed by first finding the slab along e that contains the cutting line. This can 
be done without performing I/Os, by scanning the entries from A in the appropriate 
order and adding them until the sum exceeds aw(v). The slab where the scanning 
stopped is Ek. Then, in 0(N/t) I/Os, Ek is scanned in order to find the exact cutting 
line. 

After a subtree T of height 0(log 2 1) is built, Sx and Sy are distributed into t sets 
each, corresponding to the leaves of T, and B u l k - l o a d is called recursively on each 
pair of these sets in order to build the rest of the tree. 

p r o c e d u r e B u l k load(6.,- Sy, v) 

The sets Sx and Sy contain the same N points, sorted on x and y, respectively. 
The node v is the root of the tree T being built. 
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1. Divide Sx into t sets, corresponding to t vertical slabs X\,..., Xt, each con­
taining \Sx\/t points. Store the t+1 boundary x-coordinates in memory. 

2. Divide Sy into t sets, corresponding to t horizontal slabs Y\,...,Yt, each 
containing \Sy\/t points. Store the t + 1 boundary y-coordinates in memory. 

The vertical and horizontal slabs form a grid. Let Cij be the set of points 
in the grid cell formed at the intersection of the ith horizontal slab and the 
jth vertical slab. The bounding box of the cell is known from the boundary 
coordinates stored in memory in steps 1 and 2. 

3. Create a £ x t matrix A in memory. Scan Sx and compute the grid cell counts: 

= 1 < hi < *• 

Let u=v. 

4. (a) If u is partitioned using a geometric cut orthogonal to the x-axis, de­
termine the slab Xk containing the cut line I using the boundary x-
coordinates. 
Next scan Xk and, for each cell Cj^, 1 < j < t, compute the counts 
of "subcells" Cfk and Cjk obtained by splitting cell Cj}k at I—refer to 
Figure 3(b). Store these counts in main memory, by splitting the matrix 
A into two: A< and A>, containing the first k columns and the last 
(t — k + 1) columns of A, respectively (column k from matrix A appears 
in both A< and A>). Then let Afk = \Cfk\ and A>x = \Cfk\, 1 < j < k. 
Go to 4 (d ) . 

(b) If u is partitioned using a rank cut orthogonal to the x-axis, first determine 
the slab Xk containing the cut line I using A, then scan Xk to determine 
the exact position of the cut line. Next split A into A< and A> as above. 
Go to 4 (d ) . 

(c) If u is partitioned using a rectangle cut, use the following algorithm to 
determine the sides of b'. Let I be a line orthogonal to the longest side of 
bo that cuts bo into two fat rectangles and does not intersect 6j. Using 
only the grid cell counts, decide whether any of the two new regions 
contains more than 2w(u)/3 points. If it does, repeat the process in that 
region. Otherwise, the region with the largest number of points (of the 
two) becomes b'. Scan the (up to) four slabs that contain the sides of b' 
and compute the counts of the "subcells". These counts will be stored in 
A<, a cell count matrix for b' \ 6j, and A>, a cell count matrix for bo \ b'. 
Go to 4 (d ) . 

(d) For each of the two regions constructed, create a new wp-tree node. For 
each of these two nodes, determine its partition by repeating step 4, in 
which the role of A is played by A< and A>, respectively. Stop when 
reaching level log 2 1. 

5. Scan Sx and S¥ and distribute the N points into t pairs of sets (5*, Sy), 
corresponding to the t leaves vt of T. 
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6. For each pair of sets (£*,£*) computed in step 5, either load them in memory 
and construct the remaining wp-tree nodes, or, if they don't fit in memory, 
recursively call B u l k l o a d on {S'r.S'!r 

T h e o r e m 31 A blocked restricted wp-tree can be bulk loaded in 0(n\ogmn) I/Os. 

Proof. The value t = 0(min{m, VM}) for the number of slabs was chosen so that all 
necessary items fit in internal memory. Indeed, A consists o f t 2 integers, so t < \ / M , 
and the t-wise distribution in Step 5 uses t+1 disk blocks, so t < m. 

Sorting the points takes 0(n\ogm n) I/Os. Once sorted, the points are kept sorted 
throughout the recursive calls to the B u l k J o a d procedure. Consider one call to 
B u l k J o a d . Steps 1, 2 and 3 of B u l k J o a d are linear scans of the input sets Sx and 
Sy. Step 5 can also be performed in 0(n) I/Os since Sx cind. Sy are distributed into 
0(m) sets. 

(a) (b) 

Fig. 3. Finding the median using the grid cells (grid lines are dashed), (a) Slab Xu 
containing I is computed using A. (b) A< and A> are computed by splitting Xk 
along /. 

Step 4 recursively computes a subtree of height log 2 t, using a different algorithm 
for each of the three patition types. A geometric or rank cut (Step 4.(a) or 4.(b)) 
can be computed in 0(\Sx\/t) I/Os since slab Xk is scanned at most three times. 
Similarly, a rectangle cut (Step 4.(c)) can also be computed in 0(\Sx\/t) I/Os. The 
details of this argument will be given in the full paper. It can also be proven that a 
rectangle cut always exists [8]. Summing up over the 2 l o g 2 * = 0(t) nodes built, we 
obtain that Step 4 performs 0(n) I/Os. Since a subtree of height 0( log 2 t )=@(log 2 m) 
can be built in a linear number of I/Os (one call to B u l k J o a d ) , the cost of building 
the entire blocked restricted wp-tree is 0 (n log T O n) I/Os. 

C o r o l l a r y 32 A kd-tree, BBD-tree, BAR-tree or pseudo-quad-tree can be bulk loaded 
in 0(nlogmn) I/Os. 

4 The dynamization framework 

In this section we present a framework for making wp-trees dynamic. We present 
three methods: the first one takes advantage of the weight balancing property of 
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the wp-trees and uses partial rebuilding to maintain the tree balanced [7,33], and the 
other two methods are based on the so-called logarithmic method [12,33]. While these 
methods are not new, we show how their application to blocked restricted wp-trees 
produces new dynamic data structures for indexing points in K2 that are competitive 
with or better than existing data structures in terms of I/O performance. 

The method of choice depends on the specific application and on the insertion, 
deletion, and query bounds. All three methods take advantage of the improved bulk 
loading bounds obtained in the previous section. 

4.1 Par t ia l R e b u i l d i n g 

In the definition of wp-trees, let S0 be the minimum value of S that satisfies the bal­
ancing condition. However, if we relax the balancing condition by choosing a constant 
5 > S0, we will be able to perform updates with good amortized complexity. A node 
u of a wp-tree is out of balance if there is another node u such that = v and 
w(u) > 5w(v). In other words, a node is out of balance if it has too much weight in 
one of its descendants. Also, a node v is perfectly balanced if any node u such that 

= v satisfies w(u) < 5ow(v). 
In order to allow dynamic updates on a blocked wp-tree, we employ a partial 

rebuilding technique, used by Overmars [33] for maintaining quad-trees and fed-trees 
balanced, and first adapted to external memory data structures by Arge and Vitter [7]. 
When inserting a new point into the data structure, we find its place in the appropriate 
leaf, and then check for nodes on the path from that leaf to the root that are out of 
balance. If v is the highest node on this path out of balance, we rebuild the whole 
subtree rooted at v into a perfectly balanced tree. 

T h e o r e m 41 Let T be a blocked restricted wp-tree on N points. Then we can insert 
points into T in O (;g(logT O n)(log 2 n) + l o g B n ) I/Os, amortized, and delete points 
from T in 0{\ogB n) I/Os, worst case. Point queries take 0{\ogB n) I/Os, worst case. 

Proof. Deletions do not use the partial rebuilding technique. Instead, a global rebuild­
ing technique [33] is used, whereby the whole tree is rebuilt during &{N) updates, 
to keep it balanced. The deletion cost is obtained by adding the cost of searching for 
the relevant leaf, 0 ( l o g B i V ) , to the global rebuilding cost charged to this deletion, 
0(;g(log T O n)). 

To insert a point we first search for the relevant leaf using 0 ( l o g B n ) I/Os, and 

then insert the point into that leaf. Let v be the node that becomes out of balance. 

Rebuilding the tree rooted at v takes 0 (^p-(logm I/Os. This rebuilding 

cost is charged to the 0(w(v)) updates that have been performed on the subtree 
rooted at v since the last rebuilding, resulting in an 0 (;g(logT O w(v))) I/O cost per 
update. Since we are charging this cost to the same update for each node on the 
path from root to the corresponding leaf, the resulting complexity of an insertion is 
0 (5 (logT O n)(log 2 n) + log B n) I/Os. 

As n tends to infinity, the first additive term dominates the insertion bound. In 
practice, however, we expect the behavior to be consistent with the second term, 
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0 (log Bri), because the value of B is in the thousands, thus cancelling the effect of 
the log 2 n factor in the first term. 

4.2 L o g a r i t h m i c m e t h o d s 

An alternative method of obtaining a dynamic blocked wp-tree is by adapting the 
logarithmic method [12,33] to the external memory setting. 

The main idea in the logarithmic method is to partition the set of input objects 
into log 2 N subsets of increasing size 2% and build a perfectly balanced data structure 
Ti for each of these subsets. Queries are performed by querying each of the perfectly 
balanced structures and combining the answers. Insertion is performed by finding the 
first empty structure T%, discarding all structures Tj, 0 < j < i, and building T% from 
the new object and all the objects stored in Tj, 0 < j < i. To adapt this method to 
work I/O-efficiently, two approaches can be taken: let the ith subset contain 2* blocks, 
or let it contain B% points. We call the two resulting methods the logarithmic method 
in base 2 and the logarithmic method in base B, respectively. 

L o g a r i t h m i c m e t h o d in b a s e 2. As mentioned, the ith subset contains 2* blocks, 
or B • 2% points, 0 < i < log 2 n. Queries are performed by combining the answers from 
the log 2 n structures. Insertions are also similar to the internal memory case, but we 
need to maintain a "buffer block" for each tree: all insertions go into this block until 
the block is full, at which time the rebuilding is performed using all points in this 
block. 

The following theorem s s the bounds that we obtain using the logarith­
mic method. 

T h e o r e m 42 We can maintain a forest of perfectly balanced blocked restricted wp-
trees for indexing N points, so that insertions take O (g( log T O n)(log 2 n)) I/Os, amor­
tized, deletions take 0 ( ( l o g m n)(log 2 n)) I/Os, worst case, and point queries take 
0 ( ( l o g B n)(log 2 n)) I/Os, worst case. 

The proof follows the lines of Overmars [33] and is omitted here, for brevity. Note 
that, for realistic values of n, m and B, we need less than one I/O to insert a point, 
amortized over 0(N) insertions. Compared with partial rebuilding, this method im­
proves a lot the insertion bound, but has worse deletion and point query performance. 

L o g a r i t h m i c m e t h o d in b a s e B. Arge and Vahrenhold [6] used the logarithmic 
method to give an I/O-efficient solution to the point location problem. In contrast 
to the version explained above, in their method each set contains B% points, rather 
than 2* blocks. Following closely the ideas of Arge and Vahrenhold, we obtain another 
dynamization technique for the blocked wp-tree. 

T h e o r e m 43 We can maintain a forest of perfectly balanced blocked restricted wp-
trees for indexing N points, so that insertions take O ( ( log m n)( log B n)) I/Os, amor­
tized, deletions take 0(logB n) I/Os, amortized, and point queries take 0(logBn) 
I/Os, worst case. 

Compared with the previous method, the insertion bound here is a factor of l o ^ B 

bigger, while the deletion bound is a factor of log 2 n smaller. 
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We now focus on the two running examples, the fed-tree and the BBD-tree, and 
give query and update bounds for them using the three dynamization methods. 

4.3 A p p l i c a t i o n s 

T h e fed-tree. We can exploit a property of the fed-tree partitioning method to derive 
worst-case bounds on the range query performance. This will effectively give us a new 
linear-space data structure for indexing large sets of points in M d, on which updates 
and range queries can be performed I/O-efficiently. 

T h e o r e m 44 1. Using partial rebuilding as the dynamization method, the blocked 
kd-tree on N points can be used to answer 4-sided range queries in 

I/Os in the worst case, where K is the number of points reported. Insertions take 
O (g- (logT O n) (log 2 n) + l og B n) I/Os, amortized, and deletions take 0 ( l o g B n ) 
I/Os, worst case. 

2. Using the logarithmic method in base 2 (or in base B), the range query bound 
is 0(y/n + K/B) in the worst case. Insertions take O (g-(log T On)(log 2 n)) I/Os, 
amortized (or 0(( log T O n)( log B n)) I/Os, amortized), and deletions take 
0( ( log T O n) ( log 2 n) ) I/Os, worst case (or 0(logBn) I/Os, amortized). 

Proof. Let T be a blocked fed-tree using the partial rebuilding dynamization method. 
The maximum height of the underlying fed-tree is log 1 < / ( J N, as shown in Lemma 22. 
To simplify the computation, consider the blocked fed-tree T\ which is a perfectly 
balanced blocked fed-tree whose underlying fed-tree has height log 1 < / ( J N, and T is a 
subtree of T' • The range query cost on T' is an upper bound for the cost of the same 
query on T-

The number of binary nodes visited during a range query on T' is 0(^/N 8 1 / 5 + 
K) [29]. This is obtained by counting the nodes cut by the four edges of the query 

rectangle—0(^/N 8 1 / 5 , and adding the "interior nodes", whose corresponding re­
gions are not cut by the query rectangle—0(K). To obtain the number of block nodes 
cut by each edge we need only observe that Q(~s/B) fed-tree nodes from each block 
node are cut by an axis-orthogonal line. 

The proof of the second part of the theorem is also a consequence of the above 
considerations, since each fed-tree in the logarithmic method is a perfectly balanced 
tree of height 0( log 2 N). 

R e m a r k . Note that, in the logarithmic methods, the query bound of the dynamic 
structure is the same as the bound for the static structure, although a logarithmic 
number of trees are queried in the worst case. This is true in general, if the query 
bound on the static structure is polynomial. If the query bound on the static structure 
is polylogarithmic, as in our next example, the bound on the dynamic structure 
increases asymptotically. 
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T h e B B D - t r e e . The BBD-tree is used in [8] to answer (1 + e)-approximate nearest 
neighbor queries. We can answer this type of queries using the blocked BBD-tree 
I/O-efficiently. 

T h e o r e m 45 1. Using partial rebuilding as the dynamization method, the blocked 
BBD-tree can be used to answer a (1 + e)-approximate nearest neighbor query in 

Qnnn{N) = 0 ( ^ ( l o g T O n)(log 2 n) + log f l n) 

I/Os. Insertions take O (-g(logT O n)(log 2 n) + log B n) I/Os, and deletions take 
0(\ogBn) I/Os. 

2. Using the logarithmic method with base 2 (or the log. method with base B), 
the query increases to QBBD{N)log2 n (or Q.BBD{N)\ogBn). Insertions take 
O (g( log T O n)( log 2 n)) I/Os, amortized (or 0(( log T O n)(\ogB n)) I/Os amortized), 
and deletions take O ((logT O n)(log 2 n)) I/Os, worst case (or 0(\ogBn) I/Os, 
amortized). 

Proof. Let T be a blocked BBD-tree using the partial rebuilding method. The al­
gorithm for finding a (1 + e)-approximate nearest neighbor is an external memory 
version of the algorithm proposed by Arya et al [8]. We first find the leaf containing 
the query point q. Next, in order to enumerate leaves based on their distance1 from 
q, we use an external-memory priority queue [14] of nodes, where the priority of a 
node v is the distance between q and v. The root of the BBD-tree is initially inserted 
in the priority queue. Then we extract the node v with the lowest priority from the 
queue and, starting from v, we descend the BBD-tree to the leaf node closest to the 
query point q. As we descend, we insert the sibling of each visited node into the pri­
ority queue. When we reach the leaf node, we compute the distance from the point 
found inside that leaf node to the query point q. We maintain the closest point p. 
The search terminates when the distance between the current node and q is bigger 
than d(p,q)/(l + e). Arya et al [8] prove that the number of cells visited during this 
algorithm is at most c(e) = [1 + 12/e] 2 . 

The query performance is obtained by adding the cost of finding the leaf node 
containing q to the cost of the actual nearest neighbor finding algorithm. The first is 
0 ( l o g B n). The second is c(e) times the cost of determining the nearest cell. Inserting 
an item and extracting the lowest priority item from the queue takes 0(-g(log T O n)) 
I/Os, using the external priority queue by Brodal and Katajainen [14]. So the total 
cost of determining the nearest cell is 0 (^ (logT O n) (log 2 n) + log B n). 

When dynamization is done using the two logarithmic methods, each tree of the 
forest has to be queried, hence the added factor in the query bound. 
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