
A Framework for Index Bulk Loading
and Dynamization

Pankaj K. Agarwal*, Lars Arge**,
Octavian Procopiuc***, and Jeffrey Scott Vitter*

Center for Geometric Computing, Dept. of Computer Science,
Duke University, Durham, NC 27708-0129, USA.

{paiikaj , l a r g e , t a v i , j sv}Scs.diike.edu

Abst rac t . In this paper we investigate automated methods for externalizing
internal memory data structures. We consider a class of balanced trees that we
call weight-balanced partitioning trees (or wp-trees) for indexing a set of points
in Rd. Well-known examples of wp-trees include fed-trees, BBD-trees, pseudo
quad trees, and BAR trees. These trees are defined with fixed degree and are
thus suited for internal memory implementations. Given an efficient wp-tree
construction algorithm, we present a general framework for automatically ob­
taining a new dynamic external data structure. Using this framework together
with a new general construction (bulk loading) technique of independent in­
terest, we obtain data structures with guaranteed good update performance in
terms of I /O transfers. Our approach gives considerably improved construction
and update I /O bounds of e.g. fed-trees and BBD-trees.

* Supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan fellow­
ship, by NSF grants ITR^333^1050, EIA^9870724 and CCR^9732787 and by a grant from
the U.S.-Israeli Binational Science Foundation.

** Supported in part by the National Science Foundation through ESS grant EIA-9870734,
RI grant EIA^9972879 and CAREER grant EIA^9984099. Part of this work was done
while visiting BRICS, University of Aarhus, Denmark.

* * * Supported by the National Science Foundation through research grant EIA-9870734 and
by the Army Research Office through MURI grant DAAH04^96^1^0013. Part of this work
was done while visiting BRICS, University of Aarhus, Denmark.

t Supported in part by the National Science Foundation through research grants
CCR^9877133 and EIA^9870734 and by the Army Research Office through MURI
grant DAAH04-96^1^0013. Part of this work was done while visiting BRICS, Univer­
sity of Aarhus, Denmark.

1 Introduction

Both in the database and algorithm communities, much attention has recently been
given to the development of I/O-efficient data structures for indexing point data. A
large number of data structures (or indexes) have been developed, reflecting the many
different requirements put on such structures; small (often linear) size, efficient query
of update bounds, capabilities of answering a wide variety of queries (mainly range
and proximity queries), and simplicity. See recent surveys [19,3,43]. The proposed
data structures can roughly be divided into two classes, namely practically used (and
often heuristics based) structures, for which worst-case query performance guarantees
can only be given (if at all) in the static case, and theoretically optimal dynamic struc­
tures, which have yet to be proven practically efficient. The first class of structures
are often external versions of well-known simple internal memory structures.

In this paper, we try to combine the advantages of the two classes of structures
by developing a general mechanism for obtaining efficient external data structures
from a general class of simple internal memory structures, such that the external
structures are efficient in the dynamic case. Part of our result is a new general index
construction (bulk loading) technique which is of independent interest.

1.1 I / O m o d e l a n d p r e v i o u s resul ts

In this paper we analyze the I/O and space complexity of data structures in the
standard two-level I/O model defined by the following parameters [2,28]: N, the
number of input elements, M, the number of elements that fit in main memory, and B,
the number of elements that fit in one disk block, where /V > M and 1 < B < M/2.
One I/O operation (or simply I/O) in this model consists of reading one block from
disk into main memory or writing one block from main memory to disk. The measure
of performance of an algorithm or data structure is the number of I/O operations it
performs and the maximum disk space (blocks) it uses. For notational simplicity, we
use n = N/B and m = M/B to denote the input size and memory size in units of
data blocks.

Aggarwal and Vitter [2] developed optimal algorithms for sorting a set of N el­
ements in external memory, in 0(n\ogmn) I/Os. Subsequently, I/O-efficient algo­
rithms have been developed for large number of problems. Recently, many efficient
(and often optimal) data structures have also been developed. Ideally, an exter­
nal data structure should use linear space, 0(N/B) blocks, and answer a query in
0 (l o g B N + K/B) I/Os, where K is the number of elements reported by the query.
These bounds are obtained by the B-tree data structure for one-dimensional range
searching [9,15]. For two-dimensional range searching, 0(</n + K/B) is the best ob­
tainable query bound with linear space [40]. Structures that use more than linear
space are generally infeasible in practical applications. Refer to surveys by Vitter [42]
and Arge [3] for references.

One main challenge in the design of external indexing data structures is obtaining
good query performance in a dynamic environment. Early structures, such as the grid
file [32], the various quad-trees [36,33], and the fcdB-tree [34], were poorly equipped

1

to handle dynamic updates. Later structures tried to employ various (heuristic) tech­
niques to preserve the query performance and space usage under dynamic updates.
They include the LSD-tree [23], the buddy tree [37], the hB-tree [31], and R-tree
variants [22,20,38,10,25]. These data structures are often the methods of choice in
practical applications, because they use linear space and reportedly perform well in
practice. However, in a highly dynamic environment they are all very query subop-
timal in the worst-case. The hB-tree (or holey brick tree), for example, is based on
the statically query-efficient fedB-tree, which combines the spatial query capabilities
of the fed-tree [11] with the I/O-efficiency of the B-tree. While nodes in a fedB-tree
represent rectangular regions of the space, nodes in an hB-tree represent so-called
"holey bricks", or rectangles from which smaller rectangles have been cut out. This
allows for the underlying B-tree to be maintained during updates (insertions). Un­
fortunately, a similar claim cannot be made about the underlying fed-tree and thus
good query-efficiency cannot be maintained.

Recently, a number of theoretical worst-case efficient dynamic data structures have
been developed. The cross-tree [21] and the O-tree [27] for example, both use linear-
space, answer range queries in the optimal number of I/Os, and they can be updated
I/O-efEciently. However, their practical efficiency has not been investigated, probably
because a careful theoretical analysis shows that their average query performance is
close to the worst-case performance. In contrast, the average case performance of the
fed-tree (and the structures based on it) is much better than the worst case perfor­
mance [39]. Other linear-space and query and update optimal data structures have
been designed for special types of range queries, like 2- or 3-sided two-dimensional
range queries [7,5,26,40] and halfspace range queries [1]. The practical efficiency of
these structures still has to be established.

In the database literature, the term bulk loading is often used to refer to the
process of constructing an external data structure. Since bulk loading an index us­
ing repeated insertion is often highly non-efficient [4], the development of specialized
bulk loading algorithms has received a lot of attention recently. Most work on bulk
loading has concentrated on the R-tree [35,24,17,30,41,13,16]. Although not opti­
mal, relatively efficient algorithms can often be obtained by constructing an index
level-by-level.

1.2 O u r resul ts .

In Section 2 of this paper, we define a class of linear-space trees for indexing a set
of points in M4. These so-called wp-tree.s generalize known internal memory data
structures like fed-trees, quad-trees, BBD-trees [8], and BAR trees [18]. We also show
how a wp-tree can be efficiently mapped to external memory, that is, how it can
be stored in external memory using O(n) blocks such that a root-leaf path can be
traversed I/O-efficiently.

In Section 3, we then design a general technique for bulk loading wp-trees. Using
this technique we obtain the first I/O-optimal bulk loading algorithms for fed-trees,
pseudo-quad-trees, BBD-trees and BAR-trees. Our algorithms use 0 (n log T O n) I/Os
whereas previously know algorithms use at least D(nlog2 n) I/Os.

2

Finally, in Section 4 we describe several techniques for making a wp-tree dynamic.
Our techniques are based on dynamization methods developed for internal memory
(partial rebuilding and the logarithmic method) but adapted for external memory.
Together with our bulk loading technique, this allows us to obtain provably I/O-
efficient dynamic versions of structures like the fed-trees, pseudo-quad-trees, BBD-
trees, and BAR-trees. Previously, no such structures were known.

2 The wp-tree framework

In this section we present the class of trees on which our framework can be applied.
To simplify the presentation, we develop this framework in K 2 . All the results can
easily be generalized to any dimension.

D e f i n i t i o n 21 A (f3,5, re) weight-balanced partitioning tree (or wp-tree) on a set S of
N points in K2 satisfies the following constraints:

1. Each node v corresponds to a region rv in M 2, called the extent of v. The extent
of the root node is M2:

2. Each non-leaf node v has ji > 2 children corresponding to a partition of rv into
0 disjoint regions:

3. Each leaf node v stores exactly one point p from S inside rv:
4. Let w(v) be the weight o(node v, defined as the number of data points stored in the

subtree rooted at v and let be the re'th ancestor of v. Then w(v) < Sw(v^),
for all nodes v and .

The wp-tree generalizes a number of internal memory data structures used to in­
dex point data sets: fed-trees [11], pseudo-quad-trees [33], BBD-trees [8], and BAR-
trees [18] are all wp-trees.

The weight condition insures that wp-trees are balanced. Intuitively, it says that
only a constant number of partition steps (re) is required to obtain regions containing
a fraction (<$) of the points each.

L e m m a 22 The height of a wp-tree is at most re(log1</(j N + 1) — 1.

We first show how to store a wp-tree on disk using 0(n) disk blocks so that a root-
leaf path can be traversed I/O-efficiently. Starting with the root v we fill disk blocks
with the subtree obtained by performing a breadth-first search traversal from v until
we have traversed at most B nodes—refer to Figure 1. We recursively block the tree
starting in the leaves of this subtree. The blocked wp-tree obtained in this way can
be viewed as a fanout 0(B) tree with each disk block corresponding to a node. We
call these nodes block nodes in order to differentiate them from wp-tree nodes. The
leaf block nodes of the blocked wp-tree are potentially underfull (contain less than B
wp-tree nodes), and thus O(N) blocks are needed to block the tree in the worst case.
To alleviate this problem, we let certain block nodes share the same disk block. More
precisely, if v is a non-leaf block node, we reorganize all u's children that are leaf
block nodes, such that at most one disk block is non-full. This way we only use 0(n)
disk blocks and since each non-leaf block node contains a subtree of height 0(log 2 B)
we obtain the following.

3

L e m m a 23 A blocked wp-tree T is a multi-way tree of height 0 (l o g B N). T can be
stored using 0(n) blocks.

2.1 T h e r e s t r i c t e d w p - t r e e

The definition of a wp-tree emphasizes the structure of the tree more than the geome­
try of the partitioning. The dynamization methods that will be presented in Section 4
can be applied to any wp-tree. However, without information about the partitioning
used, we cannot quantify the update and query I/O-bounds obtained using these
methods. Therefore we now restrict the definition of a wp-tree by adding geomtric
constraints on the extent of a node and the partitioning method used. The resulting
restricted wp-tree is general enough to encompass all data structures that interest us,
and at the same time is restrictive enough to alow us to prove general update, bulk
loading, and query bounds.

D e f i n i t i o n 24 A restricted (/?, S, re) wp-tree is a (/?, S, re) wp-tree in which each node
v satisfies the following constraints:

1. The extent of v is the set theoretic difference of two convex polygons, rv = bo \ hi.
The inner polygon hi must be inside the outer polygon bo, and the orientations
of edges forming bi and bo must be taken from a constant set of directions D.

2. The extents of the f3 children of v are obtained from rv by applying the following
cuts a constant number of times:

(a) A geometric cut I. A geometric cut is a line I, which has to be along a direction
e £ D and should not intersect 6j.

(b) A rank cut (e,a). A rank cut is a line I along direction e, where e £ D. Let V
be the line along e such that aw(v) of the w(v) points stored in the subtree
rooted in v is to the left of V. Then I is the closest line to V not intersecting
the interior of 6j.

(c) A rectangle cut. A rectangle cut can be applied to v only if bi and bo are
both fat rectangles (i.e., the ratio between the longest and shortest sides is at
most 3). Then the cut is a fat rectangle b' such that 6j C b' C bo and both
b' \ bi and bo \ b' contain at most 2w(v)/3 points.

2.2 E x a m p l e s o f r e s t r i c t e d w p - t r e e s

Like wp-trees, restricted wp-trees generalize internal memory data structures like
fed-trees, BBD-trees, pseudo-quad-trees and BAR-trees. Below we further discuss fed-
trees and BBD-trees. In the full paper we show how pseudo-quad-trees and BAR-trees
are also captured by the restricted wp-tree definition.

T h e fed-tree. Introduced by Bentley [11], the fed-tree is a classical structure for
answering range (or window) queries. It is a binary tree that represents a recursive
decomposition of the space into subspaces by means of hyperplanes orthogonal to the
coordinate axes. In M 2, the partition is by axes-orthogonal lines—refer to Figure 1.
Each partition line divides the point-set into two equal subsets. On even levels of
the tree the line is orthogonal to the x-axis, while on odd levels it is orthogonal to

4

Fig. 1. fed-tree partitioning. The values shown are the coordinates of the
dividers. Points are stored in leaves and disk blocks are outlined with
dashed lines.

the y-axis. These partitions are rank cuts (e, 1/2), where e is orthogonal to the x- or
j/-axis. Thus, it is easy to see that the fed-tree is a restricted (2,1/2,1) wp-tree.

T h e B B D - t r e e The balanced box decomposition tree, or BBD-tree, was introduced by
Arya et al [8] for answering approximate nearest neighbor queries. Like the fed-tree,
the BBD-tree is a binary tree representing a recursive decomposition of the space into
subspaces. The region associated with a BBD-tree node is the set theoretic difference
of two rectangles, 6j and bo (with 6j included in bo), where the rectangles are fat,
meaning that the ratio between the longest and shortest sides is bounded.

Split Shrink

low child high child b O outer child

b inner child
biim

(a) (b)

Fig. 2. BBD-tree partitions, (a) Split node, (b) Shrink node.

More precisely, a BBD-tree consists of two types of nodes: split nodes and shrink
nodes. In a split node, the partition is done using an axis-orthogonal line that cuts the
longest side of bo so that the resulting rectangles are fat and 6j lies entirely inside
one of them—refer to Figure 2(a). In a shrink node v, the partition is done using a
box rather than a line. This box b lies inside bo and determines the extent of the two
children: b \ 6j is the extent of the inner child and bo \ b is the extent of the outer
child—refer to Figure 2(b). While split nodes reduce the geometric size, the box b
used in shrink nodes is chosen so as to reduce the number of points by a factor of 1.5.
By alternating split nodes and shrink nodes in the tree, both the geometric size and
the number of points associated with each node decrease exponentially as we descend
a constant number of levels in the BBD-tree (see [8] for details). It is easy to see that
the split node uses a geometric cut, and the shrink node uses a rectangle cut. In the
full paper we show that a BBD-tree is a restricted (2,2/3,3) wp-tree.

5

3 Bulk loading restricted wp-trees

In this section we describe an optimal algorithm for bulk loading (constructing) a
blocked restricted wp-tree.

It is natural to bulk load a wp-tree using a top-down approach. For example,
to construct a fed-tree on N points in K2 we first find the point with the median
iB-coordinate in 0(n) I/Os. We then distribute the points into two sets based on this
point and proceed recursively in each set, alternating between using the median x-
coordinate and y-coordinate to define the distribution. This way, each level of the
wp-tree is constructed in a linear number of I/Os, so in total we use 0 (n log 2 n)
I/Os to bulk load the tree. This bound is a factor of log 2 m bigger than the optimal
0 (n log T O n) bound (the sorting bound).

Intuitively, we need to construct 0(log 2 m) levels of the wp-tree—instead of just
one—in a linear number of I/Os in order to obtain this bound. Doing so seems
difficult because of the way the points are alternately split by x- and y-coordinates.
Nevertheless, below we show how to bulk load a blocked restricted wp-tree, and thus
a fed-tree, in 0 (n log T O n) I/Os.

To simplify the presentation, we present our restricted wp-tree bulk loading al­
gorithm only for the two-dimensional case and when f3 = 2 and D contains only the
two directions orthogonal to the coordinate axes. The details of the general algorithm
will be given in the full paper.

Let S be a set of N points in M 2. The first step in constructing a blocked wp-
tree for S is to sort the N points twice: once according to their x-coordinate, and
once according to their y-coordinate. Call the resulting sets Sx and Sy, respectively.
Next the recursive procedure B u l k - l o a d is called with Sx and Sy as input sets.
B u l k - l o a d builds a subtree of height 0(log 2 m) in each recursive call, until the input
fits in internal memory. The main idea in the algorithm is to impose a grid on the
set of input points. The grid is computed so that it can be used as an estimate of
the point distribution, allowing partitions to be computed without reading all the
points. More precisely, B u l k - l o a d starts by dividing the current region (initially M2)
into t = 0(min{m, s/M}) vertical slabs and t horizontal slabs, each containing N/t
points. These slabs form a t x t grid. The number of points in each grid cell is then
computed and stored in a matrix A, which is kept in memory. All three types of cuts
can now be computed fast using A. A rank cut (e,a) for a node v, for example, is
computed by first finding the slab along e that contains the cutting line. This can
be done without performing I/Os, by scanning the entries from A in the appropriate
order and adding them until the sum exceeds aw(v). The slab where the scanning
stopped is Ek. Then, in 0(N/t) I/Os, Ek is scanned in order to find the exact cutting
line.

After a subtree T of height 0(log 2 1) is built, Sx and Sy are distributed into t sets
each, corresponding to the leaves of T, and B u l k - l o a d is called recursively on each
pair of these sets in order to build the rest of the tree.

p r o c e d u r e B u l k load(6.,- Sy, v)

The sets Sx and Sy contain the same N points, sorted on x and y, respectively.
The node v is the root of the tree T being built.

6

1. Divide Sx into t sets, corresponding to t vertical slabs X\,..., Xt, each con­
taining \Sx\/t points. Store the t+1 boundary x-coordinates in memory.

2. Divide Sy into t sets, corresponding to t horizontal slabs Y\,...,Yt, each
containing \Sy\/t points. Store the t + 1 boundary y-coordinates in memory.

The vertical and horizontal slabs form a grid. Let Cij be the set of points
in the grid cell formed at the intersection of the ith horizontal slab and the
jth vertical slab. The bounding box of the cell is known from the boundary
coordinates stored in memory in steps 1 and 2.

3. Create a £ x t matrix A in memory. Scan Sx and compute the grid cell counts:

= 1 < hi < *•

Let u=v.

4. (a) If u is partitioned using a geometric cut orthogonal to the x-axis, de­
termine the slab Xk containing the cut line I using the boundary x-
coordinates.
Next scan Xk and, for each cell Cj^, 1 < j < t, compute the counts
of "subcells" Cfk and Cjk obtained by splitting cell Cj}k at I—refer to
Figure 3(b). Store these counts in main memory, by splitting the matrix
A into two: A< and A>, containing the first k columns and the last
(t — k + 1) columns of A, respectively (column k from matrix A appears
in both A< and A>). Then let Afk = \Cfk\ and A>x = \Cfk\, 1 < j < k.
Go to 4 (d) .

(b) If u is partitioned using a rank cut orthogonal to the x-axis, first determine
the slab Xk containing the cut line I using A, then scan Xk to determine
the exact position of the cut line. Next split A into A< and A> as above.
Go to 4 (d) .

(c) If u is partitioned using a rectangle cut, use the following algorithm to
determine the sides of b'. Let I be a line orthogonal to the longest side of
bo that cuts bo into two fat rectangles and does not intersect 6j. Using
only the grid cell counts, decide whether any of the two new regions
contains more than 2w(u)/3 points. If it does, repeat the process in that
region. Otherwise, the region with the largest number of points (of the
two) becomes b'. Scan the (up to) four slabs that contain the sides of b'
and compute the counts of the "subcells". These counts will be stored in
A<, a cell count matrix for b' \ 6j, and A>, a cell count matrix for bo \ b'.
Go to 4 (d) .

(d) For each of the two regions constructed, create a new wp-tree node. For
each of these two nodes, determine its partition by repeating step 4, in
which the role of A is played by A< and A>, respectively. Stop when
reaching level log 2 1.

5. Scan Sx and S¥ and distribute the N points into t pairs of sets (5*, Sy),
corresponding to the t leaves vt of T.

7

6. For each pair of sets (£*,£*) computed in step 5, either load them in memory
and construct the remaining wp-tree nodes, or, if they don't fit in memory,
recursively call B u l k l o a d on {S'r.S'!r

T h e o r e m 31 A blocked restricted wp-tree can be bulk loaded in 0(n\ogmn) I/Os.

Proof. The value t = 0(min{m, VM}) for the number of slabs was chosen so that all
necessary items fit in internal memory. Indeed, A consists o f t 2 integers, so t < \ / M ,
and the t-wise distribution in Step 5 uses t+1 disk blocks, so t < m.

Sorting the points takes 0(n\ogm n) I/Os. Once sorted, the points are kept sorted
throughout the recursive calls to the B u l k J o a d procedure. Consider one call to
B u l k J o a d . Steps 1, 2 and 3 of B u l k J o a d are linear scans of the input sets Sx and
Sy. Step 5 can also be performed in 0(n) I/Os since Sx cind. Sy are distributed into
0(m) sets.

(a) (b)

Fig. 3. Finding the median using the grid cells (grid lines are dashed), (a) Slab Xu
containing I is computed using A. (b) A< and A> are computed by splitting Xk
along /.

Step 4 recursively computes a subtree of height log 2 t, using a different algorithm
for each of the three patition types. A geometric or rank cut (Step 4.(a) or 4.(b))
can be computed in 0(\Sx\/t) I/Os since slab Xk is scanned at most three times.
Similarly, a rectangle cut (Step 4.(c)) can also be computed in 0(\Sx\/t) I/Os. The
details of this argument will be given in the full paper. It can also be proven that a
rectangle cut always exists [8]. Summing up over the 2 l o g 2 * = 0(t) nodes built, we
obtain that Step 4 performs 0(n) I/Os. Since a subtree of height 0(log 2 t)=@(log 2 m)
can be built in a linear number of I/Os (one call to B u l k J o a d) , the cost of building
the entire blocked restricted wp-tree is 0 (n log T O n) I/Os.

C o r o l l a r y 32 A kd-tree, BBD-tree, BAR-tree or pseudo-quad-tree can be bulk loaded
in 0(nlogmn) I/Os.

4 The dynamization framework

In this section we present a framework for making wp-trees dynamic. We present
three methods: the first one takes advantage of the weight balancing property of

8

the wp-trees and uses partial rebuilding to maintain the tree balanced [7,33], and the
other two methods are based on the so-called logarithmic method [12,33]. While these
methods are not new, we show how their application to blocked restricted wp-trees
produces new dynamic data structures for indexing points in K2 that are competitive
with or better than existing data structures in terms of I/O performance.

The method of choice depends on the specific application and on the insertion,
deletion, and query bounds. All three methods take advantage of the improved bulk
loading bounds obtained in the previous section.

4.1 Par t ia l R e b u i l d i n g

In the definition of wp-trees, let S0 be the minimum value of S that satisfies the bal­
ancing condition. However, if we relax the balancing condition by choosing a constant
5 > S0, we will be able to perform updates with good amortized complexity. A node
u of a wp-tree is out of balance if there is another node u such that = v and
w(u) > 5w(v). In other words, a node is out of balance if it has too much weight in
one of its descendants. Also, a node v is perfectly balanced if any node u such that

= v satisfies w(u) < 5ow(v).
In order to allow dynamic updates on a blocked wp-tree, we employ a partial

rebuilding technique, used by Overmars [33] for maintaining quad-trees and fed-trees
balanced, and first adapted to external memory data structures by Arge and Vitter [7].
When inserting a new point into the data structure, we find its place in the appropriate
leaf, and then check for nodes on the path from that leaf to the root that are out of
balance. If v is the highest node on this path out of balance, we rebuild the whole
subtree rooted at v into a perfectly balanced tree.

T h e o r e m 41 Let T be a blocked restricted wp-tree on N points. Then we can insert
points into T in O (;g(logT O n)(log 2 n) + l o g B n) I/Os, amortized, and delete points
from T in 0{\ogB n) I/Os, worst case. Point queries take 0{\ogB n) I/Os, worst case.

Proof. Deletions do not use the partial rebuilding technique. Instead, a global rebuild­
ing technique [33] is used, whereby the whole tree is rebuilt during &{N) updates,
to keep it balanced. The deletion cost is obtained by adding the cost of searching for
the relevant leaf, 0 (l o g B i V) , to the global rebuilding cost charged to this deletion,
0(;g(log T O n)).

To insert a point we first search for the relevant leaf using 0 (l o g B n) I/Os, and

then insert the point into that leaf. Let v be the node that becomes out of balance.

Rebuilding the tree rooted at v takes 0 (^p-(logm I/Os. This rebuilding

cost is charged to the 0(w(v)) updates that have been performed on the subtree
rooted at v since the last rebuilding, resulting in an 0 (;g(logT O w(v))) I/O cost per
update. Since we are charging this cost to the same update for each node on the
path from root to the corresponding leaf, the resulting complexity of an insertion is
0 (5 (logT O n)(log 2 n) + log B n) I/Os.

As n tends to infinity, the first additive term dominates the insertion bound. In
practice, however, we expect the behavior to be consistent with the second term,

9

0 (log Bri), because the value of B is in the thousands, thus cancelling the effect of
the log 2 n factor in the first term.

4.2 L o g a r i t h m i c m e t h o d s

An alternative method of obtaining a dynamic blocked wp-tree is by adapting the
logarithmic method [12,33] to the external memory setting.

The main idea in the logarithmic method is to partition the set of input objects
into log 2 N subsets of increasing size 2% and build a perfectly balanced data structure
Ti for each of these subsets. Queries are performed by querying each of the perfectly
balanced structures and combining the answers. Insertion is performed by finding the
first empty structure T%, discarding all structures Tj, 0 < j < i, and building T% from
the new object and all the objects stored in Tj, 0 < j < i. To adapt this method to
work I/O-efficiently, two approaches can be taken: let the ith subset contain 2* blocks,
or let it contain B% points. We call the two resulting methods the logarithmic method
in base 2 and the logarithmic method in base B, respectively.

L o g a r i t h m i c m e t h o d in b a s e 2. As mentioned, the ith subset contains 2* blocks,
or B • 2% points, 0 < i < log 2 n. Queries are performed by combining the answers from
the log 2 n structures. Insertions are also similar to the internal memory case, but we
need to maintain a "buffer block" for each tree: all insertions go into this block until
the block is full, at which time the rebuilding is performed using all points in this
block.

The following theorem s s the bounds that we obtain using the logarith­
mic method.

T h e o r e m 42 We can maintain a forest of perfectly balanced blocked restricted wp-
trees for indexing N points, so that insertions take O (g(log T O n)(log 2 n)) I/Os, amor­
tized, deletions take 0 ((l o g m n)(log 2 n)) I/Os, worst case, and point queries take
0 ((l o g B n)(log 2 n)) I/Os, worst case.

The proof follows the lines of Overmars [33] and is omitted here, for brevity. Note
that, for realistic values of n, m and B, we need less than one I/O to insert a point,
amortized over 0(N) insertions. Compared with partial rebuilding, this method im­
proves a lot the insertion bound, but has worse deletion and point query performance.

L o g a r i t h m i c m e t h o d in b a s e B. Arge and Vahrenhold [6] used the logarithmic
method to give an I/O-efficient solution to the point location problem. In contrast
to the version explained above, in their method each set contains B% points, rather
than 2* blocks. Following closely the ideas of Arge and Vahrenhold, we obtain another
dynamization technique for the blocked wp-tree.

T h e o r e m 43 We can maintain a forest of perfectly balanced blocked restricted wp-
trees for indexing N points, so that insertions take O ((log m n)(log B n)) I/Os, amor­
tized, deletions take 0(logB n) I/Os, amortized, and point queries take 0(logBn)
I/Os, worst case.

Compared with the previous method, the insertion bound here is a factor of l o ^ B

bigger, while the deletion bound is a factor of log 2 n smaller.

10

We now focus on the two running examples, the fed-tree and the BBD-tree, and
give query and update bounds for them using the three dynamization methods.

4.3 A p p l i c a t i o n s

T h e fed-tree. We can exploit a property of the fed-tree partitioning method to derive
worst-case bounds on the range query performance. This will effectively give us a new
linear-space data structure for indexing large sets of points in M d, on which updates
and range queries can be performed I/O-efficiently.

T h e o r e m 44 1. Using partial rebuilding as the dynamization method, the blocked
kd-tree on N points can be used to answer 4-sided range queries in

I/Os in the worst case, where K is the number of points reported. Insertions take
O (g- (logT O n) (log 2 n) + l og B n) I/Os, amortized, and deletions take 0 (l o g B n)
I/Os, worst case.

2. Using the logarithmic method in base 2 (or in base B), the range query bound
is 0(y/n + K/B) in the worst case. Insertions take O (g-(log T On)(log 2 n)) I/Os,
amortized (or 0((log T O n)(log B n)) I/Os, amortized), and deletions take
0((log T O n) (log 2 n)) I/Os, worst case (or 0(logBn) I/Os, amortized).

Proof. Let T be a blocked fed-tree using the partial rebuilding dynamization method.
The maximum height of the underlying fed-tree is log 1 < / (J N, as shown in Lemma 22.
To simplify the computation, consider the blocked fed-tree T\ which is a perfectly
balanced blocked fed-tree whose underlying fed-tree has height log 1 < / (J N, and T is a
subtree of T' • The range query cost on T' is an upper bound for the cost of the same
query on T-

The number of binary nodes visited during a range query on T' is 0(^/N 8 1 / 5 +
K) [29]. This is obtained by counting the nodes cut by the four edges of the query

rectangle—0(^/N 8 1 / 5 , and adding the "interior nodes", whose corresponding re­
gions are not cut by the query rectangle—0(K). To obtain the number of block nodes
cut by each edge we need only observe that Q(~s/B) fed-tree nodes from each block
node are cut by an axis-orthogonal line.

The proof of the second part of the theorem is also a consequence of the above
considerations, since each fed-tree in the logarithmic method is a perfectly balanced
tree of height 0(log 2 N).

R e m a r k . Note that, in the logarithmic methods, the query bound of the dynamic
structure is the same as the bound for the static structure, although a logarithmic
number of trees are queried in the worst case. This is true in general, if the query
bound on the static structure is polynomial. If the query bound on the static structure
is polylogarithmic, as in our next example, the bound on the dynamic structure
increases asymptotically.

11

T h e B B D - t r e e . The BBD-tree is used in [8] to answer (1 + e)-approximate nearest
neighbor queries. We can answer this type of queries using the blocked BBD-tree
I/O-efficiently.

T h e o r e m 45 1. Using partial rebuilding as the dynamization method, the blocked
BBD-tree can be used to answer a (1 + e)-approximate nearest neighbor query in

Qnnn{N) = 0 (^ (l o g T O n)(log 2 n) + log f l n)

I/Os. Insertions take O (-g(logT O n)(log 2 n) + log B n) I/Os, and deletions take
0(\ogBn) I/Os.

2. Using the logarithmic method with base 2 (or the log. method with base B),
the query increases to QBBD{N)log2 n (or Q.BBD{N)\ogBn). Insertions take
O (g(log T O n)(log 2 n)) I/Os, amortized (or 0((log T O n)(\ogB n)) I/Os amortized),
and deletions take O ((logT O n)(log 2 n)) I/Os, worst case (or 0(\ogBn) I/Os,
amortized).

Proof. Let T be a blocked BBD-tree using the partial rebuilding method. The al­
gorithm for finding a (1 + e)-approximate nearest neighbor is an external memory
version of the algorithm proposed by Arya et al [8]. We first find the leaf containing
the query point q. Next, in order to enumerate leaves based on their distance1 from
q, we use an external-memory priority queue [14] of nodes, where the priority of a
node v is the distance between q and v. The root of the BBD-tree is initially inserted
in the priority queue. Then we extract the node v with the lowest priority from the
queue and, starting from v, we descend the BBD-tree to the leaf node closest to the
query point q. As we descend, we insert the sibling of each visited node into the pri­
ority queue. When we reach the leaf node, we compute the distance from the point
found inside that leaf node to the query point q. We maintain the closest point p.
The search terminates when the distance between the current node and q is bigger
than d(p,q)/(l + e). Arya et al [8] prove that the number of cells visited during this
algorithm is at most c(e) = [1 + 12/e] 2 .

The query performance is obtained by adding the cost of finding the leaf node
containing q to the cost of the actual nearest neighbor finding algorithm. The first is
0 (l o g B n). The second is c(e) times the cost of determining the nearest cell. Inserting
an item and extracting the lowest priority item from the queue takes 0(-g(log T O n))
I/Os, using the external priority queue by Brodal and Katajainen [14]. So the total
cost of determining the nearest cell is 0 (^ (logT O n) (log 2 n) + log B n).

When dynamization is done using the two logarithmic methods, each tree of the
forest has to be queried, hence the added factor in the query bound.

References

1. P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa, and J. Vitter. Efficient searching
with linear constraints. In Proc. ACM Symp. Principles of Database Systems, pages

1 The distance between a point p and a node is defined as the closest distance between p
and any part of the region associated with the node.

12

169—178, 1998. (Full version with improved results—to appear in Journal of Computer
and System Sciences—can be obtained from the authors www-pages).

2. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31:1116-1127, 1988.

3. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G. C.
Resende, editors, Handbook of Massive Data Sets. Kluwer Academic Publishers, 2000.
(To appear).

4. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on
dynamic It-trees. In Proc. Workshop on Algorithm Engineering, 1999.

5. L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal
range search indexing. In Proc. ACM Symp. Principles of Database Systems, pages
346-357, 1999.

6. L. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. In Proc. ACM
Symp. on Computational Geometry, pages 191-200, 2000.

7. L. Arge and J. S. Vitter. Optimal dynamic interval management in external memory.
In Proc. IEEE Symp. on Foundations of Comp. Set., pages 560-569, 1996.

8. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the
ACM, 45(6):891-923, Nov. 1998.

9. R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes.
Acta Informatica, 1:173-189, 1972.

10. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In Proc. SIGMOD Intl. Conf. on
Management of Data, pages 322-331, 1990.

11. J. L. Bentley. Multidimensional binary search trees used for associative searc hing.
Commun. ACM, 18(9):509-517, 1975.

12. J. L. Bentley. Decomposable searching problems. Inform. Process. Lett., 8:244-251,
1979.

13. S. Berchtold, C. Bohm, and H.-P. Kriegel. Improving the query performance of high-
dimensional index structures by bulk load operations. In Proc. Conference on Extending
Database Technology, pages 216-230, 1998.

14. G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues.
In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages 107-118,
1998.

15. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, 1979.
16. M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low

stabbing number. In Proc. Annual European Symposium on Algorithms, pages 167-178,
2000.

17. D. J. DeWitt, N. Kabra, J. M. Patel, and J.-B. Yu. Client-server Paradise. In Proc.
19th Intl. Conf. on Very Large Databases, pages 558-569, 1994.

18. C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced aspect ratio trees: Com­
bining the advantages of k-d trees and octrees. In Proceedings of the Tenth Annual
ACM-SI AM Symposium on Discrete Algorithms, pages 300-309, N.Y., Jan. 17-19 1999.
ACM-SIAM.

19. V. Gaede and O. Giinther. Multidimensional access methods. Computing Surveys,
30(2):170-231, 1998.

20. D. Greene. An implementation and performance analysis of spatial data access methods.
In Proc. IEEE International Conference on Data Engineering, pages 606-615, 1989.

21. R. Grossi and G. P. Italiano. Efficient cross-trees for external memory. In J. Abello and
J. S. Vitter, editors, External Memory Algorithms and Visualization, DIMACS Series

13

in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society Press, 1999.

22. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. SIGMOD
Intl. Conf. on Management of Data, pages 47^57, 1985.

23. A. Henrich, H.-W. Six, and P. Widmayer. Paging binary trees with external balancing.
In Proc. Graph-Theoretic Concepts in Computer Science, LNCS 411, pages 200 270.
1989.

24. I. Kamel and C. Faloutsos. On packing R-trees. In Proc. Intl. Conf. on Information
and Knowledge Management, pages 47^57, 1993.

25. I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In Proc.
IEEE International Conf. on Very Large Databases, pages 50CH509, 1994.

20. P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data mod­
els with constraints and classes. Journal of Computer and System Sciences, 52 (3): 589^
012, 1990.

27. K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating
index structures. In Proc. International Conference on Database Theory, pages 257^270,
1999.

28. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading MA, second edition, 1998.

29. D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region searches in
multidimensional binary search trees and balanced quad trees. Acta Inform., 9:23^29,
1977.

30. S. T. Leutenegger, M. A. Lopez, and J. Edgington. STR: A simple and efficient algorithm
for R-tree packing. In Proc. Annual IEEE Conference on Data Engineering, pages 497^
500, 1990.

31. D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with good
guaranteed performance. ACM Transactions on Database Systems, 15(4):025^058, 1990.

32. J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems, 9(1):257^270, 1984.

33. M. H. Overmars. The Design of Dynamic Data Structures, volume 150 of Lecture Notes
Comput. Set. Springer-Verlag, Heidelberg, West Germany, 1983.

34. J. Robinson. The K-D-B tree: A search structure for large multidimensional dynamic
indexes. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 10^18, 1984.

35. N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using
packed R-trees. In Proc. SIGMOD Intl. Conf. on Management of Data, pages 17^31,
1985.

30. H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley, MA,
1989.

37. B. Seeger and H.-P. Kriegel. The buddy-tree: An efficient and robust access method for
spatial data base systems. In Proc. IEEE International Conf. on Very Large Databases,
pages 590^001, 1990.

38. T. Sellis, N. Roussopoulos, and C. Faloutsos. The R +-tree: A dynamic index for multi­
dimensional objects. In Proc. IEEE International Conf. on Very Large Databases, pages
507^518, 1987.

39. Y. V. Silva Filho. Average case analysis of region search in balanced fe-d trees. Inform.
Process. Lett, 8:219^223, 1979.

40. S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure for range
searching in secondary memory. In Proc. AGM-SIAM Symp. on Discrete Algorithms,
pages 378^387, 1995.

14

41. J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading
multidimensional index structures. In Proc. IEEE International Conf. on Very Large
Databases, pages 406^415, 1997.

42. J. S. Vitter. External memory algorithms and data structures. In J. Abello and J. S.
Vitter, editors, External Memory Algorithms and Visualization. American Mathematical
Society Press, 1999.

43. J. S. Vitter. Online data structures in external memory. In Proc. Annual International
Colloquium on Automata, Languages, and Programming, LNCS 1644, pages 119^133,
1999.

15

