Skip to main content

On the Online Bin Packing Problem

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2076))

Included in the following conference series:

Abstract

A new framework for analyzing online bin packing algorithms is presented. This framework presents a unified way of explaining the performance of algorithms based on the Harmonic approach [3 5 8 10 11 12]. Within this framework, it is shown that a new algorithm, Harmonic++, has asymptotic performance ratio at most 1.58889. It is also shown that the analysis of Harmonic+1 presented in [11] is incorrect; this is a fundamental logical flaw, not an error in calculation or an omitted case. The asymptotic performance ratio of Harmonic+1 is at least 1.59217. Thus Harmonic++ provides the best upper bound for the online bin packing problem to date.

This research was partially supported by an LSU Council on Research summer stipend and by the Research Competitveness Subprogram of the Louisiana Board of Regents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, D. J. A lower bound for on-line one-dimensional bin packing algorithms. Tech. Rep. R-864, Coordinated Sci. Lab., University of Illinois at Urbana-Champaign, 1979.

    Google Scholar 

  2. Coffman, E. G., Garey, M. R., AND Johnson, D. S. Approximation algorithms for bin packing: A survey. In Approximation Algorithms for NP-hard Problems, D. Hochbuam, Ed. PWS Publishing Company, 1997, ch. 2.

    Google Scholar 

  3. Csirik, J. An on-line algorithm for variable-sized bin packing. Acta Informatica 26, 8 (1989), 697–709.

    Article  MATH  MathSciNet  Google Scholar 

  4. Csirik, J., AND Woeginger, G. On-line packing and covering problems. In On-Line Algorithms—The State of the Art, A. Fiat and G. Woeginger, Eds., Lecture Notes in Computer Science. Springer-Verlag, 1998, ch. 7.

    Google Scholar 

  5. Csirik, J., AND Woeginger, G. Resource augmentation for online bounded space bin packing. In Proceedings of the 27th International Colloquium on Automata, Languages and Programming (Jul 2000), pp. 296–304.

    Google Scholar 

  6. Johnson, D. S. Fast algorithms for bin packing. Journal Computer Systems Science 8 (1974), 272–314.

    MATH  Google Scholar 

  7. Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., AND Graham, R. L. Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3 (1974), 256–278.

    Article  MathSciNet  Google Scholar 

  8. Lee, C., AND Lee, D. A simple on-line bin-packing algorithm. Journal of the ACM 32, 3 (Jul 1985), 562–572.

    Article  MATH  Google Scholar 

  9. Liang, F. M. A lower bound for online bin packing. Information Processing Letters 10 (1980), 76–79.

    Article  MATH  MathSciNet  Google Scholar 

  10. Ramanan, P., Brown, D., Lee, C., AND Lee, D. On-line bin packing in linear time. Journal of Algorithms 10, 3 (Sep 1989), 305–326.

    Article  MATH  MathSciNet  Google Scholar 

  11. Richey, M. B. Improved bounds for harmoic-based bin packing algorithms. Discrete Applied Mathematics 34 (1991), 203–227.

    Article  MATH  MathSciNet  Google Scholar 

  12. Seiden, S. S. An optimal online algorithm for bounded space variable-sized bin packing. In Proceedings of the 27th International Colloquium on Automata, Languages and Programming (Jul 2000), pp. 283–295.

    Google Scholar 

  13. VAN Vliet, A. An improved lower bound for online bin packing algorithms. Information Processing Letters 43, 5 (Oct 1992), 277–284.

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, A. C. C. New algorithms for bin packing. Journal of the ACM 27 (1980), 207–227.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seiden, S.S. (2001). On the Online Bin Packing Problem. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds) Automata, Languages and Programming. ICALP 2001. Lecture Notes in Computer Science, vol 2076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48224-5_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-48224-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42287-7

  • Online ISBN: 978-3-540-48224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics