Skip to main content

Dynamic Adaptation of Cooperative Agents for MRI Brain Scans Segmentation

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2101))

Included in the following conference series:

  • 1109 Accesses

Abstract

To cope with the difficulty of MRI brain scans automatic segmentation, we need to constrain and control the selection and the adjustment of processing tools depending on the local image characteristics. To extract domain and control knowledge from the image, we propose to use situated cooperative agents whose dedicated behavior, i.e. segmentation of one type of tissue, is dynamically adapted with respect to their position in the image. Qualitative maps are used as a common framework to represent knowledge. Constraints that drive the agents behavior, based on topographic relationships and radiometric information, are gradually gained and refined during the segmentation progress. Incremental refinement of the segmentation is obtained through the combination, distribution and opposition of solutions concurrently proposed by the agents, via respectively three types of cooperation: integrative, augmentative and confrontational. We report in detail our multi-agent approach and results obtained on MRI brain scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zeki, S. and Shipp, S.: The functional logic of cortical connections. Nature 335 (1988) 311–314.

    Article  Google Scholar 

  2. Tootell, R. B., Hadjikhani, N. K., Mendola, J. D., et al.: From retinotopy to recognition: fMRI in human visual cortex. Trends Neurosci 2 (1998) 174–182.

    Article  Google Scholar 

  3. Van Essen, D. C., Drury, H. A., Joshi, S. et al.: Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. PNAS USA 95 (1998) 788–795.

    Article  Google Scholar 

  4. Wandell, B. A.: Computational neuroimaging of human visual cortex. Ann Rev Neurosci 22 (1999) 145–173.

    Article  Google Scholar 

  5. DeYoe, E. A., Carman, G. J., Bandettini, P., et al.: Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS USA 93 (1996) 2382–86.

    Article  Google Scholar 

  6. Wandell, B. A., Chial, S. and Backus, B. T.: Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience 12 (2001) 739–752.

    Article  Google Scholar 

  7. Teo, P. C., Sapiro, G. and Wandell, B. A.: Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans Med Imag 16 (1997) 852–863.

    Article  Google Scholar 

  8. Collins, D., Zijdenbos, A., Kollokian, V., et al.: Design and construction of a realistic digital brain phantom. IEEE Trans Med Imag 17 (1998) 463–468.

    Article  Google Scholar 

  9. Drury, H. A., Van Essen, D. C., Anderson, C. H., et al.: Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience 8 (1996) 1–28.

    Article  Google Scholar 

  10. Dale, A. M., Fischl, B. and Sereno, M.: Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9 (1999) 179–194.

    Article  Google Scholar 

  11. Germond, L., Dojat, M., Taylor, C. and Garbay, C.: A cooperative framework for segmentation of MRI brain scans. Artif Intell in Med 20 (2000) 77–94.

    Article  Google Scholar 

  12. Warnking, J., Guérin-Dugué, A., Chéhikian, A., et al.: Retinotopical mapping of visual areas using fMRI and a fast cortical flattening algorithm. Neuroimage 11 (2000) S646.

    Article  Google Scholar 

  13. Bloch, I.: Information combination operators for data fusion: A comparative review with classification. IEEE Trans Systems, Man, Cybernetics 26 (1996)

    Google Scholar 

  14. Comaniciu, D. and Meer, P.: Distribution free decomposition of multivariate data. Pattern analysis applications 2 (1999) 22–30.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richard, N., Dojat, M., Garbay, C. (2001). Dynamic Adaptation of Cooperative Agents for MRI Brain Scans Segmentation. In: Quaglini, S., Barahona, P., Andreassen, S. (eds) Artificial Intelligence in Medicine. AIME 2001. Lecture Notes in Computer Science(), vol 2101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48229-6_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-48229-6_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42294-5

  • Online ISBN: 978-3-540-48229-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics