Abstract
The production of suitable clusters to help physicians explore data and take decisions is a hard task. This paper addresses this question and proposes a new method to define clusters of patients which takes advantage of the power of association rules method. We present different notions of association and we specify the notion of frequent almost closed itemset which is the most appropriate for applications in the medical area. Applied to Hodgkin’s disease to help establish prognostic groups, the first results bring out some parameters for which classical statistic methods confirm that they are interesting.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G. Das and H. Mannila. Context-based similarity measures for categorical databases. In proceedings of the Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 00, number 1910 in Lecture notes in artificial intelligence, pages 201–210, Lyon, F, 2000. Springer-Verlag.
R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery of association rules, chapter 12. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset lattices. Information Systems, 24(1):25–46, Elsevier, 1999.
B. Crémilleux and C. Robert. A theoretical framework for decision trees in uncertain domains: Application to medical data sets. In E. Keravnou, C. Garbay, R. Baud, and J. Wyatt, editors, 6th Conference on Artificial Intelligence In Medicine Europe (AIME 97), volume 1211 of Lecture notes in artificial intelligence, pages 145–156, Grenoble (France), 1997. Springer-Verlag.
J. F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for binary data mining. In proceedings of the Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 00, volume 1805 of Lecture notes in artificial intelligence, pages 62–73, Kyoto (Japan), 2000. Springer-Verlag.
E. M. Noordijk, P. Carde, A. M. Mandard, W. A M. Mellink, M. Monconduit, H. Eghbali, U. Tirelli, J. Thomas, R. Somers, N. Dupouy, and M. Henry-Amar. Preliminary results of the EORTC-GPMC controlled clinical trial H7 in early stage Hodgkin’s disease. Ann. Oncol., 5 (Suppl. 2):S107–S112, 1994.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durand, N., Crémilleux, B., Henry-Amar, M. (2001). Discovering Associations in Clinical Data: Application to Search for Prognostic Factors in Hodgkin’s Disease. In: Quaglini, S., Barahona, P., Andreassen, S. (eds) Artificial Intelligence in Medicine. AIME 2001. Lecture Notes in Computer Science(), vol 2101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48229-6_6
Download citation
DOI: https://doi.org/10.1007/3-540-48229-6_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42294-5
Online ISBN: 978-3-540-48229-1
eBook Packages: Springer Book Archive