Abstract
An object classification system built of a simple colour based visual attention method, and a prototype based hierarchical classifier is established as a link between subsymbolic and symbolic data processing. During learning the classifier generates a hierarchy of prototypes. These prototypes constitute a taxonomy of objects. By assigning confidence values to the prototypes a classification request may also return symbols with confidence values.
For performance evaluation the classifier was applied to the task of visual object categorization of three data sets, two real—world and one artificial. Orientation histograms on subimages were utilized as features.With the currently very simple feature extraction method, classification accuracies in the range of 69% to 90% were attained.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth Publishing Company, Belmont, California, U. S. A., 1984.
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis, 20(11):1254–1259, 1998.
C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4:219–227, 1985.
T. Kohonen. Self Organizing Maps. Springer Verlag, 1995.
G. Palmand G. Kraetzschmar. SFB527: Integration symbolischer und subsymbolischer Informationsverarbeitung in adaptiven sensorimotorischen Systemen. In M. Jarke, K. Pasedach, and K. Pohl, editors, Informatik’ 97-Informatik als Innovationsmotor, pages 111–120. Springer Verlag, 1997.
M. Roth and W. T. Freeman. Orientation histograms for hand gesture recognition. Technical Report 94-03, Mitsubishi Electric Research Laboratorys, Cambridge Research Center, 1995.
J. Schürmann. Pattern Classification. Wiley, New York, 1996.
A. R. Smith. Color gamut transform pairs. In R. L. Phillips, editor, 5th annual conf. on Computer graphics and Interactive Techniques, pages 12–19, New York, 1978. ACM.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kestler, H.A., Simon, S., Baune, A., Schwenker, F., Palm, G. (1999). Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-symbolic Integration. In: Burgard, W., Cremers, A.B., Cristaller, T. (eds) KI-99: Advances in Artificial Intelligence. KI 1999. Lecture Notes in Computer Science(), vol 1701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48238-5_22
Download citation
DOI: https://doi.org/10.1007/3-540-48238-5_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66495-6
Online ISBN: 978-3-540-48238-3
eBook Packages: Springer Book Archive