Skip to main content

Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-symbolic Integration

  • Conference paper
  • First Online:
KI-99: Advances in Artificial Intelligence (KI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1701))

Included in the following conference series:

Abstract

An object classification system built of a simple colour based visual attention method, and a prototype based hierarchical classifier is established as a link between subsymbolic and symbolic data processing. During learning the classifier generates a hierarchy of prototypes. These prototypes constitute a taxonomy of objects. By assigning confidence values to the prototypes a classification request may also return symbols with confidence values.

For performance evaluation the classifier was applied to the task of visual object categorization of three data sets, two real—world and one artificial. Orientation histograms on subimages were utilized as features.With the currently very simple feature extraction method, classification accuracies in the range of 69% to 90% were attained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

    Google Scholar 

  2. Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth Publishing Company, Belmont, California, U. S. A., 1984.

    MATH  Google Scholar 

  3. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis, 20(11):1254–1259, 1998.

    Article  Google Scholar 

  4. C. Koch and S. Ullman. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4:219–227, 1985.

    Google Scholar 

  5. T. Kohonen. Self Organizing Maps. Springer Verlag, 1995.

    Google Scholar 

  6. G. Palmand G. Kraetzschmar. SFB527: Integration symbolischer und subsymbolischer Informationsverarbeitung in adaptiven sensorimotorischen Systemen. In M. Jarke, K. Pasedach, and K. Pohl, editors, Informatik’ 97-Informatik als Innovationsmotor, pages 111–120. Springer Verlag, 1997.

    Google Scholar 

  7. M. Roth and W. T. Freeman. Orientation histograms for hand gesture recognition. Technical Report 94-03, Mitsubishi Electric Research Laboratorys, Cambridge Research Center, 1995.

    Google Scholar 

  8. J. Schürmann. Pattern Classification. Wiley, New York, 1996.

    Google Scholar 

  9. A. R. Smith. Color gamut transform pairs. In R. L. Phillips, editor, 5th annual conf. on Computer graphics and Interactive Techniques, pages 12–19, New York, 1978. ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kestler, H.A., Simon, S., Baune, A., Schwenker, F., Palm, G. (1999). Object Classification Using Simple, Colour Based Visual Attention and a Hierarchical Neural Network for Neuro-symbolic Integration. In: Burgard, W., Cremers, A.B., Cristaller, T. (eds) KI-99: Advances in Artificial Intelligence. KI 1999. Lecture Notes in Computer Science(), vol 1701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48238-5_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-48238-5_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66495-6

  • Online ISBN: 978-3-540-48238-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics