Abstract
Starting from the regular tree language E of ground constructor-instances of any linear term, we build a finite tree automaton that recognizes the set of descendants R* (E) of E for a constructor-based term rewrite system whose right-hand-sides fulfill the following three restrictions: linearity, no nested function symbols, function arguments are variables or ground terms. Note that left-linearity is not assumed. We next present several applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Comon. Sequentiality, second order monadic logic and tree automata. In Proc., Tenth Annual IEEE Symposium on Logic in Computer Science, pages 508–517. IEEE Computer Society Press, 26–29 June 1995.
H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and Applications (TATA). http://13ux02.univ-lille3.fr/tata.
Hubert Comon and Florent Jacquemard. Ground reducibility is exptime-complete. In Proc. IEEE Symp. on Logic in Computer Science, Varsaw, June 1997. IEEE Comp. Soc. Press.
J. Coquidé, M. Dauchet, R. Gilleron, and S. Vagvolgyi. Bottom-up Tree Pushdown Automata and Rewrite Systems. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy), volume 488 of LNCS, pages 287–298. Springer-Verlag, April 1991.
M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc., Fifth Annual IEEE Symposium on Logic in Computer Science, pages 242–248, Philadelphia, Pennsylvania, 1990. IEEE Computer Society Press.
N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. Van Leuven, editor, Handbook of Theoretical Computer Science, chapter 6, pages 243–320. Elsevier Science Publishers, 1990.
T. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms. In Proceedings of 9th Conference on Rewriting Techniques and Applications, Tsukuba (Japan), volume 1379 of LNCS, pages 151–165. Springer-Verlag, 1998.
R. Gilleron and S. Tison. Regular Tree Languages and Rewrite Systems. Fundamenta Informaticae, 24:157–175, 1995.
F. Jacquemard. Decidable Approximations of Term Rewrite Systems. In H. Ganzinger, editor, Proceedings 7th Conference RTA, New Brunswick (USA), volume 1103 of LNCS, pages 362–376. Springer-Verlag, 1996.
S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Grammars. In Proceedings of 6th Colloquium on Trees in Algebra and Programming, volume 1214 of LNCS, pages 429–440. Springer-Verlag, 1997.
S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Grammars. Discrete Mathematics and Theoritical Computer Science, 1:69–98, 1997. (http://dmtcs.loria.fr/).
P. Réty. Méthodes d’Unification par Surréduction. Thèse de Doctorat d’Université, Université de Nancy I, March 1988. In french.
K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewriting Systems. The Journal of Computer and System Sciences, 37:367–394, 1988.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Réty, P. (1999). Regular Sets of Descendants for Constructor-Based Rewrite Systems. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_10
Download citation
DOI: https://doi.org/10.1007/3-540-48242-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66492-5
Online ISBN: 978-3-540-48242-0
eBook Packages: Springer Book Archive