Skip to main content

Complexity of Terminological Reasoning Revisited

  • Conference paper
Logic for Programming and Automated Reasoning (LPAR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1705))

  • 325 Accesses

Abstract

TBoxes in their various forms are key components of knowledge representation systems based on description logics (DLs) since they allow for a natural representation of terminological knowledge. Largely due to a classical result given by Nebel [15], complexity analyses for DLs have, until now, mostly failed to take into account the most basic form of TBoxes, so-called acyclic TBoxes. In this paper, we concentrate on DLs for which reasoning without TBoxes is PSpace-complete, and show that there exist logics for which the complexity of reasoning remains in PSpace if acyclic TBoxes are added and also logics for which the complexity increases. This demonstrates that it is necessary to take acyclic TBoxes into account for complexity analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Artale and E. Franconi. A temporal description logic for reasoning about actions and plans. Journal of Artificial Intelligence Research (JAIR), (9), 1998.

    Google Scholar 

  2. F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and G. Smolka. On the expressivity of feature logics with negation, functional uncertainty, and sort equations. Journal of Logic, Language and Information, 2:1–18, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept languages. In Proceedings of IJCAI-91, pages 452–457, Sydney, Australia, August 24–30, 1991. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

    Google Scholar 

  4. F. Baader and B. Hollunder.set A terminological knowledge representation system with complete inference algorithms. In Processings of PDK’91, volume 567 of LNAI, pages 67–86, Kaiserslautern, Germany, July 1–3, 1991. Springer-Verlag, Berlin-Heidelberg — New York, 1991.

    Google Scholar 

  5. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An empirical analysis of optimization techniques for terminological representation systems — or: Making KRIS get a move on. Journal of Applied Intelligence, 4:109–132, 1994.

    Article  Google Scholar 

  6. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  7. D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms and complexity. In Proceedings of ECAI’96, Budapest, Hungary, pages 303–307, 1996.

    Google Scholar 

  8. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expressive description logics. In Handbook of Automated Reasoning. Elsevier Science Publishers (North-Holland), Amsterdam, 1999. To appear.

    Google Scholar 

  9. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. Information and Computation, 134(1):1–58, 10 Apr. 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka, editor, Foundation of Knowledge Representation, pages 191–236. CSLI-Publications, 1996.

    Google Scholar 

  11. B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. DFKI Research Report RR-90-04, German Research Center for Artificial Intelligence, Kaiserslautern, 1990.

    Google Scholar 

  12. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Proceedings of LPAR’99, LNCS, Tbilisi, Georgia, 1999. Springer-Verlag, Berlin — Heidelberg — New York, 1999.

    Google Scholar 

  13. C. Lutz. On the complexity of terminological reasoning. LTCS-Report 99-04, LuFG Theoretical Computer Science, RWTH Aachen, Germany, 1999.

    Google Scholar 

  14. C. Lutz. Reasoning with concrete domains. In Proceedings of IJCAI-99, Stockholm, Sweden, July 31 — August 6, 1999. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1999.

    Google Scholar 

  15. B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence, 43:235–249, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Nebel. Terminological cycles: Semantics and computational properties. In J. F. Sowa, editor, Principles of Semantic Networks-Explorations in the Representation of Knowledge, chapter 11, pages 331–361. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

    Google Scholar 

  17. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48(1):1–26, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Tobies. A PSpace algorithm for graded modal logic. In Proceedings of CADE-16, LNCS, 1999. Springer-Verlag, Berlin — Heidelberg — New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lutz, C. (1999). Complexity of Terminological Reasoning Revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-48242-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66492-5

  • Online ISBN: 978-3-540-48242-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics