Abstract
We investigate the computational complexity of counting the Hilbert basis of a homogeneous system of linear Diophantine equations. We establish lower and upper bounds on the complexity of this problem by showing that counting the Hilbert basis is #P-hard and belongs to the class #NP. Moreover, we investigate the complexity of variants obtained by restricting the number of occurrences of the variables in the system.
Research partially supported by NSF grants CCR-9610257 and CCR-9732041.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Boudet, E. Contejean, and H. Devie. A new AC unification algorithm with a new algorithm for solving Diophantine equations. In Proceedings 5th LICS, Philadelphia (PA, USA), pages 289–299, June 1990.
D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journal of Symbolic Computation, 3:203–216, 1987.
F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
A. Boudet. Competing for the AC-unification race. Journal of Automated Reasoning, 11(2):185–212, 1993.
E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear Diophantine equations. Information and Computation, 113(1):143–172, 1994.
M. Clausen and A. Fortenbacher. Efficient solution of linear Diophantine equations. Journal of Symbolic Computation, 8(1–2):201–216, 1989.
A. Durand, M. Hermann, and L. Juban. On the complexity of recognizing the Hilbert basis of a linear Diophantine system. In L. Pacholski, editor, Proceedings 24th MFCS, Szklarska Poreba (Poland), LNCS, Springer-Verlag, September 1999.
E. Domenjoud. Outils pour la déduction automatique dans les théories associative-commutatives. PhD thesis, Université Henri Poincaré, Nancy, France, September 1991.
E. Domenjoud. Solving systems of linear Diophantine equations: An algebraic approach. In A. Tarlecki, editor, Proceedings 16th MFCS, Kazimierz Dolny (Poland), LNCS 520, pages 141–150. Springer-Verlag, September 1991.
A. Durand. Personal communication, June 1999.
A. A. Elimam and S. E. Elmaghraby. On the reduction method for integer linear programs II. Discrete Applied Mathematics, 12(3):241–260, 1985.
F. Fages. Associative commutative unification. Journal of Symbolic Computation, 3(3):257–275, 1987.
M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Co, 1979.
P. Gordan. Ueber die Auflösung linearen Gleichungen mit reellen Coefficienten. Mathematische Annalen, 6:23–28, 1873.
D. Hilbert. Ueber die Theorie der algebraischen Formen. Mathematische Annalen, 36:473–534, 1890.
M. Hermann and P. G. Kolaitis. The complexity of counting problems in equational matching. Journal of Symbolic Computation, 20(3):343–362, 1995.
M. Hermann and P. G. Kolaitis. Computational complexity of simultaneous elementary matching problems. In J. Wiedermann and P. Hájek, editors, Proceedings 20th MFCS, Prague (Czech Republic), LNCS 969, pages 359–370. Springer-Verlag, August 1995.
A. Herold and J. H. Siekmann. Unification in Abelian semigroups. Journal of Automated Reasoning, 3(3):247–283, 1987.
G. Huet. An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Information Processing Letters, 7(3):144–147, 1978.
L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News, 26(1):2–13, March 1995.
J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257–321. MIT Press, Cambridge (MA, USA), 1991.
D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 2, pages 67–161. North-Holland, Amsterdam, 1990.
L. Juban. Comptage de l’ensemble des éléments de la base de Hilbert d’un système d’équations diophantiennes linéaires. Technical Report 98-R-066, LORIA, 1998.
J.-L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation diophantienne linéaire. Compte-rendus de l’Académie des Sciences de Paris, 305(1):39–40, 1987.
D. Lankford. Non-negative integer basis algorithms for linear equations with integer coefficients. Journal of Automated Reasoning, 5(1):25–35, 1989.
P. Lincoln and J. Christian. Adventures in associative-commutative unification. Journal of Symbolic Computation, 8(1–2):217–240, 1989.
C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association for Computing Machinery, 28(4):765–768, 1981.
C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
L. Pottier. Minimal solutions of linear Diophantine systems: bounds and algorithms. In R.V. Book, editor, Proceedings 4th RTA, Como (Italy), LNCS 488, pages 162–173. Springer-Verlag, April 1991.
A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.
M. Stickel. A complete unification algorithm for associative-commutative functions. In Proceedings 4th IJCAI, Tbilisi (USSR), pages 71–82, 1975.
M. Stickel. A unification algorithm for associative-commutative functions. Journal of the Association for Computing Machinery, 28(3):423–434, 1981.
S. Toda. On the computational power of PP and ⊕P. In Proceedings 30th FOCS, Research Triangle Park (NC, USA), pages 514–519, 1989.
S. Toda. Computational complexity of counting complexity classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan, 1991.
S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to #P. Theoretical Computer Science, 100(1):205–221, 1992.
L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.
L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.
V. Zankó. #P-completeness via many-one reductions. International Journal of Foundations of Computer Science, 2(1):77–82, 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hermann, M., Juban, L., Kolaitis, P.G. (1999). On the Complexity of Counting the Hilbert Basis of a Linear Diophantine System. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_2
Download citation
DOI: https://doi.org/10.1007/3-540-48242-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66492-5
Online ISBN: 978-3-540-48242-0
eBook Packages: Springer Book Archive