Abstract
In this paper we continue to develop the approach to automated search for theorem proofs started in Kyiv in 1960–1970s. This approach presupposes the development of deductive techniques used for the processing of mathematical texts, written in a formal first-order language, close to the natural language used in mathematical papers. We construct two logical calculi, gS and mS, satisfying the following requirements: the syntactical form of the initial problem should be preserved; the proof search should be goal-oriented; preliminary skolemization is not obligatory; equality handling should be separated from the deduction process. The calculus gS is a machine-oriented sequent-type calculus with “large-block” inference rules for first-order classical logic. The calculus mS is a further development of the calculus gS, enriched with formal analogs of the natural proof search techniques such as definition handling and application of auxiliary propositions. The results on soundness and completeness of gS and mS are given.
On leave from Glushkov Institute of Cybernetics
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Degtyarev, A., Lyaletski, A.: Logical inference in SAD (In Russian). In: Kapitonova, Yu. (ed.): Matematicheskie osnovy sistem iskusstvennogo intellekta. Institute of Cybernetics, Kiev (1981) 3–11
Lyaletski, A.: Gentzen calculi and admissible substitutions. In: Actes preliminaries, du Simposium Pranco-Sovetique “Informatika-91”. Grenoble, France (1991) 99–111
Glushkov, V.: Some problems of automata theory and artificial intelligence (in Russian). Kibernetika 2 (1970) 3–13
Anufriyev, F., Fediurko, V., Letichevski, A., Asel’derov, Z., Didukh I.: On one algorithm of theorem proof search in Group Theory (in Russian). Kibernetika 1 (1966) 23–29
Anufriyev, F.: An algorithm of theorem proof search in logical calculi (in Russian). In: Teoriya avtomatov 5. Institute of Cybernetics, Kiev (1969) 3–26
Glushkov, V, Vershinin, K., Kapitonova, Yu., Letichevski, A., Malevanniy, N., Kostyrko, V.: On a formal language for description of mathematical texts (in Russian). In: Avtomatizatsiya poiska dokazatel’stv teorem v matematike. Institute of Cybernetics, Kiev (1974) 3–36
Degtyarev, A.: The strategy of monotone paramodulation (in Russian). In: Proc.of 5th All Soviet Union conf.on mathematical logic. Novosibirsk (1979) 39
Atayan, V., Vershinin, K.: On formalization of some inference search methods (in Russian). In: Avtomatizatsiya obrabotki matematicheskikh tekstov. Institute of Cybernetics, Kiev (1980) 36–52
Kapitonova, Yu., Vershinin, K., Degtyarev, A., Zhezherun, A., Lyaletski, A.: On a system for mathematical texts processing (in Russian). Kibernetika 2 (1979) 48
Glushkov, V.: The System for Proving Automation (in Russian). In: Avtomatizatsiya obrabotki matematicheskikh tekstov. Institute of Cybernetics, Kiev (1980) 3–30
Degtyarev, A.: Equality handling techniques in theories with a full set of reductions (in Russian). In: Matematicheskoye obespecheniye sistem logicheskogo vyvoda i deduktivnych postroyeniy na EVM. Institute of Cybernetics, Kiev (1983) 42–55
Atayan, V., Morokhovets, M.: Combining formal derivation search procedures and natural theorem proving techniques in an automated theorem proving system. Cybernetics and System Analysis 32 (1996) 442–465
Degtyarev, A., Kapitonova, Yu., Letichevski, A., Lyaletski, A., Morokhovets, M.: A brief historical sketch on Kiev school of automated theorem proving. In: Buch-berger, B., Jebelean, T. (eds.): Proc. Second International THEOREMA Workshop. RISC, Linz, Austria (1998) 151–155
Gallier, J.: Logic for computer science: foundations of Automatic Theorem Proving. Harper and Row, Inc. New York (1986) 513 p.
Robinson, J.: A Machine-Oriented Logic Based on Resolution Principle. JACM (1965) 23–41
Kanger, S.: Simplified proof method for elementary logic. In: Comp. Program. and Form. Sys.: Stud. in Logic. Amsterdam, North-Holland, Publ. Co. (1963) 87–93
Lyaletski, A.V.: Variant of Herbrand Theorem for Formulas in Prefix Form (in Russian). Kibernetika 1 (1981) 112–116
Atayan, V., Vershinin, K., Zhezherun, A.: On structural processing of mathematical texts (in Russian). In: Raspoznavaniye obrazov. Institute of Cybernetics, Kiev (1978) 43–54
Morokhovets, M., Luzhnykh, A.: Representing mathematical texts in a formalized natural-like language. In: Buchberger, B., Jebelean, T. (eds.): Proc. Second International THEOREMA Workshop. RISC, Linz, Austria (1998) 157–160
Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: A survey of the Theorema project. In: Kuechlin, W. (ed.): Proc. ISSAC’97, Maui, Hawaii (1997) 384–391
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Degtyarev, A.I., Lyaletski, A.V., Morokhovets, M.K. (1999). Evidence Algorithm and Sequent Logical Inference Search. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_4
Download citation
DOI: https://doi.org/10.1007/3-540-48242-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66492-5
Online ISBN: 978-3-540-48242-0
eBook Packages: Springer Book Archive