Skip to main content

Evidence Algorithm and Sequent Logical Inference Search

  • Conference paper
Logic for Programming and Automated Reasoning (LPAR 1999)

Abstract

In this paper we continue to develop the approach to automated search for theorem proofs started in Kyiv in 1960–1970s. This approach presupposes the development of deductive techniques used for the processing of mathematical texts, written in a formal first-order language, close to the natural language used in mathematical papers. We construct two logical calculi, gS and mS, satisfying the following requirements: the syntactical form of the initial problem should be preserved; the proof search should be goal-oriented; preliminary skolemization is not obligatory; equality handling should be separated from the deduction process. The calculus gS is a machine-oriented sequent-type calculus with “large-block” inference rules for first-order classical logic. The calculus mS is a further development of the calculus gS, enriched with formal analogs of the natural proof search techniques such as definition handling and application of auxiliary propositions. The results on soundness and completeness of gS and mS are given.

On leave from Glushkov Institute of Cybernetics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Degtyarev, A., Lyaletski, A.: Logical inference in SAD (In Russian). In: Kapitonova, Yu. (ed.): Matematicheskie osnovy sistem iskusstvennogo intellekta. Institute of Cybernetics, Kiev (1981) 3–11

    Google Scholar 

  2. Lyaletski, A.: Gentzen calculi and admissible substitutions. In: Actes preliminaries, du Simposium Pranco-Sovetique “Informatika-91”. Grenoble, France (1991) 99–111

    Google Scholar 

  3. Glushkov, V.: Some problems of automata theory and artificial intelligence (in Russian). Kibernetika 2 (1970) 3–13

    Google Scholar 

  4. Anufriyev, F., Fediurko, V., Letichevski, A., Asel’derov, Z., Didukh I.: On one algorithm of theorem proof search in Group Theory (in Russian). Kibernetika 1 (1966) 23–29

    Google Scholar 

  5. Anufriyev, F.: An algorithm of theorem proof search in logical calculi (in Russian). In: Teoriya avtomatov 5. Institute of Cybernetics, Kiev (1969) 3–26

    Google Scholar 

  6. Glushkov, V, Vershinin, K., Kapitonova, Yu., Letichevski, A., Malevanniy, N., Kostyrko, V.: On a formal language for description of mathematical texts (in Russian). In: Avtomatizatsiya poiska dokazatel’stv teorem v matematike. Institute of Cybernetics, Kiev (1974) 3–36

    Google Scholar 

  7. Degtyarev, A.: The strategy of monotone paramodulation (in Russian). In: Proc.of 5th All Soviet Union conf.on mathematical logic. Novosibirsk (1979) 39

    Google Scholar 

  8. Atayan, V., Vershinin, K.: On formalization of some inference search methods (in Russian). In: Avtomatizatsiya obrabotki matematicheskikh tekstov. Institute of Cybernetics, Kiev (1980) 36–52

    Google Scholar 

  9. Kapitonova, Yu., Vershinin, K., Degtyarev, A., Zhezherun, A., Lyaletski, A.: On a system for mathematical texts processing (in Russian). Kibernetika 2 (1979) 48

    Google Scholar 

  10. Glushkov, V.: The System for Proving Automation (in Russian). In: Avtomatizatsiya obrabotki matematicheskikh tekstov. Institute of Cybernetics, Kiev (1980) 3–30

    Google Scholar 

  11. Degtyarev, A.: Equality handling techniques in theories with a full set of reductions (in Russian). In: Matematicheskoye obespecheniye sistem logicheskogo vyvoda i deduktivnych postroyeniy na EVM. Institute of Cybernetics, Kiev (1983) 42–55

    Google Scholar 

  12. Atayan, V., Morokhovets, M.: Combining formal derivation search procedures and natural theorem proving techniques in an automated theorem proving system. Cybernetics and System Analysis 32 (1996) 442–465

    Article  MATH  MathSciNet  Google Scholar 

  13. Degtyarev, A., Kapitonova, Yu., Letichevski, A., Lyaletski, A., Morokhovets, M.: A brief historical sketch on Kiev school of automated theorem proving. In: Buch-berger, B., Jebelean, T. (eds.): Proc. Second International THEOREMA Workshop. RISC, Linz, Austria (1998) 151–155

    Google Scholar 

  14. Gallier, J.: Logic for computer science: foundations of Automatic Theorem Proving. Harper and Row, Inc. New York (1986) 513 p.

    MATH  Google Scholar 

  15. Robinson, J.: A Machine-Oriented Logic Based on Resolution Principle. JACM (1965) 23–41

    Google Scholar 

  16. Kanger, S.: Simplified proof method for elementary logic. In: Comp. Program. and Form. Sys.: Stud. in Logic. Amsterdam, North-Holland, Publ. Co. (1963) 87–93

    Google Scholar 

  17. Lyaletski, A.V.: Variant of Herbrand Theorem for Formulas in Prefix Form (in Russian). Kibernetika 1 (1981) 112–116

    Google Scholar 

  18. Atayan, V., Vershinin, K., Zhezherun, A.: On structural processing of mathematical texts (in Russian). In: Raspoznavaniye obrazov. Institute of Cybernetics, Kiev (1978) 43–54

    Google Scholar 

  19. Morokhovets, M., Luzhnykh, A.: Representing mathematical texts in a formalized natural-like language. In: Buchberger, B., Jebelean, T. (eds.): Proc. Second International THEOREMA Workshop. RISC, Linz, Austria (1998) 157–160

    Google Scholar 

  20. http://www-formal.stanford.edu/clt/ARS/systems.html

  21. http://mizar.uw.bialostok.pl/

  22. Buchberger, B., Jebelean, T., Kriftner, F., Marin, M., Tomuta, E., Vasaru, D.: A survey of the Theorema project. In: Kuechlin, W. (ed.): Proc. ISSAC’97, Maui, Hawaii (1997) 384–391

    Google Scholar 

  23. http://www.ags.uni-sb.de/projects/deduktion/projects/omega/

  24. http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

  25. http://www.Cybercom.net/~rbjones/rbjpub/logic/qedres00.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degtyarev, A.I., Lyaletski, A.V., Morokhovets, M.K. (1999). Evidence Algorithm and Sequent Logical Inference Search. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48242-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66492-5

  • Online ISBN: 978-3-540-48242-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics