Skip to main content

First Order Linear Temporal Logic over Finite Time Structures

  • Conference paper
Logic for Programming and Automated Reasoning (LPAR 1999)

Abstract

In this work, the notion of provability for first order linear temporal logic over finite time structures, FO-LTL fin, is studied. We show that the validity problem for such a logic is not recursively enumerable, hence FO-LTL fin is not recursively axiomatizable.

This negative result however does not hold in the case of bounded validity, that is truth in all temporal models where the object domain is possibly infinite, but the underlying sequence of time points does not exceed a given size. A formula is defined to be k-valid if it is true in all temporal models whose underlying time frame is not greater than k, where k is any fixed positive integer. In this work a tableau calculus is defined, that is sound and complete with respect to k-validity, when given as input the initial formula and the bound k on the size of the temporal models. The main feature of the system, extending the propositional calculus defined in [7], is that of explicitly denoting time points and having tableau nodes labelled by either expressions intuitively stating that a formula holds in a given temporal interval, or “temporal constraints”, i.e. linear inequalities on time points. Branch closure is reduced to unsatisfiability over the integers of the set of temporal constraints in the branch.

This work has been partially supported by Agenzia Spaziale Italians (ASI) and CNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Abadi. The power of temporal proofs. Theoretical Computer Science, 65:35–83, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic. Journal of the Association for Computing Machinery, 37:279–317, 1990.

    MATH  MathSciNet  Google Scholar 

  3. S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal versus first-order logic to query temporal databases. In Proc. of the 15th Int. Conf. on Principles of Databases (PODS’96), 1996.

    Google Scholar 

  4. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM: a framework for programming in temporal logic. In Proc. of REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms, Correctness, volume 430 of LNCS. Springer, 1989.

    Google Scholar 

  5. V. Benzaken, S. Cerrito, and S. Praud. Vérification statique de contraintes d’intégrité dynamiques. In Proc. of 15èmes Journées Bases de Données Avancées (BDA99), Bordeaux, France, October 1999. To appear.

    Google Scholar 

  6. N Bidoit and S. De Amo. A first step towards implementing dynamic algebraic dependencies. Theoretical Computer Science, 2(190):115–149, january 1998.

    Article  Google Scholar 

  7. S. Cerrito and M. Cialdea Mayer. Bounded model search in linear temporal logic and its application to planning. In H. De Swart, editor, International Conference on Automated Reasoning with Analytical Tableaux and Related Methods, pages 124–140. Springer, 1998.

    Google Scholar 

  8. S. Cerrito and M. Cialdea Mayer. Using linear temporal logic to model and solve planning problems. In F. Giunghiglia, editor, Proceedings of the 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’ 98), pages 141–152. Springer Verlag, 1998.

    Google Scholar 

  9. S. Cerrito, M. Cialdea Mayer, and S. Praud. First order linear temporal logic over finite time structures is not semi-decidable. Tecnical Report LRI n. 1208, available at http://www.dia.uniroma3.it/~cialdea/papers/nonre.ps. Presented at the Workshop Methods for Modalities 1 (M4M) (Amsterdam, May 1999).

  10. S. Cerrito, M. Cialdea Mayer, and S. Praud. A tableau calculus for first order linear temporal logic over bounded time structures. Technical Report LRI n. 1207, available at http://www.dia.uniroma3.it/~cialdea/papers/foltl.ps.

  11. J. Chomicki. Temporal query languages: a survey. In D.M. Gabbay and H.J. Ohlbach, editors, Temporal Logic: ICTL’94, volume 827 of Lecture Notes in Computer Science, pages 506–534. Springer-Verlag, 1994.

    Chapter  Google Scholar 

  12. D. Gabbay. Declarative past and imperative future: Executable temporal logic for interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc. of Colloquium on Temporal Logic in Specification, number 398 in LNCS, pages 409–448. Sprinber-Verlag, 1989.

    Google Scholar 

  13. R. Hähnle and O. Ibens. Improving temporal logic tableaux using integer constraints. In D. M. Gabbay and H. J. Ohlbach, editors, Proceedings of the First International Conference on Temporal Logic (ICTL 94), volume 827 of LNCS, pages 535–539. Springer, 1994.

    Google Scholar 

  14. D. Harel. Recurring dominoes: Making the higly undecidable higly understandable. Annals of Discrete Mathematics, 24:51–72, 1985.

    MATH  MathSciNet  Google Scholar 

  15. M Kaminski and C.K. Wong. The power of the “always” operator in first-order temporal logic. Theoretical Computer Science, pages 271–281, 1996.

    Google Scholar 

  16. F. Kröger. On the interpretability of arithmetic in temporal logic. Theoretical Computer Science, 73:47–61, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  17. P.H. Schmitt and J. Goubault-Larrecq. A tableau system for full linear temporal logic. Draft, available at: http://www.dyade.fr/fr/actions/vip/jgl/ltl2.ps.gz.

  18. P.H. Schmitt and J. Goubault-Larrecq. A tableau system for linear-time temporal logic. In E. Brinksma, editor, 3rd Workshop on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’97), LNCS. Springer Verlag, 1997.

    Google Scholar 

  19. P. Wolper. The tableau method for temporal logic: an overview. Logique et Analyse, 28:119–152, 1985.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cerrito, S., Mayer, M.C., Praud, S. (1999). First Order Linear Temporal Logic over Finite Time Structures. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-48242-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66492-5

  • Online ISBN: 978-3-540-48242-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics