Skip to main content

Infinite Relations in Paraconsistent Databases

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1691))

  • 250 Accesses

Abstract

Paraconsistent information is information that is incomplete and/or inconsistent. A data model for representing and manipulating paraconsistent information in relational databases has recently been developed. Algebraic operators on the underlying paraconsistent relations of this model are generalizations of the usual ones on ordinary relations. However, unlike in the ordinary case, a DBMS based on paraconsistent relations must be capable of handling infinite relations. In this paper, we show this necessity and identify classes of infinite paraconsistent relations whose members can be effectively represented and manipulated. We show that the classes of REGULAR and, under different conditions, CONTEXT-SENSITIVE as well as PSPACE paraconsistent relations are such. We also show that the CONTEXT-FREE and R.E. classes do not have the desired properties, while P, NP, LOGSPACE and NLOGSPACE also probably do not. These results help identify the kinds of relational DBMS that can be constructed for handling incomplete and inconsistent information about tuples.

Abstract

This research has been partially supported by the National Science Foundation research grant no. IRI 96-28866.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Bagai, and M. A. Orgun. A temporal paraconsistent relational algebra for incomplete and inconsistent information. In Proc. 33rd Annual ACM Southeast Conference, pages 240–248, 1995.

    Google Scholar 

  2. R. Bagai and R. Sunderraman. A paraconsistent relational data model. International Journal of Computer Mathematics, 55(1):39–55, 1995.

    Article  Google Scholar 

  3. R. Bagai and R. Sunderraman. Bottom-up computation of the Fitting model for general deductive databases. Journal of Intelligent Information Systems, 6(1):59–75, 1996.

    Article  Google Scholar 

  4. R. Bagai and R. Sunderraman. Computing the well-founded model of deductive databases. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4(2):157–175, 1996.

    Article  MathSciNet  Google Scholar 

  5. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

    Article  Google Scholar 

  6. N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors, Modern Uses of Many-valued logic, pages 8–37. Reidel, Dordrecht, 1977.

    Google Scholar 

  7. H. A. Blair, and V. S. Subrahmanian. Paraconsistent logic programming. Theoretical Computer Science, 68:135–154, 1989.

    Article  MathSciNet  Google Scholar 

  8. A. K. Chandra, D. K. Kozen, and J. Stockmeyer. Alternation. JACM, 28(1):114–133, 1981.

    Article  MathSciNet  Google Scholar 

  9. E. F. Codd. A relational model for shared data banks. CACM, 13(6):377–387, 1970.

    Article  Google Scholar 

  10. E. F. Codd. Missing information (applicable and inapplicable) in relational databases. SIGMOD Record, 15(4):53–78, 1986.

    Article  Google Scholar 

  11. N. C. A. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic, 15:497–510, 1974.

    Article  MathSciNet  Google Scholar 

  12. J. Hartmanis, P. M. Lewis II, and R. E. Stearns. Hierarchies of memory limited computations. In Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logical Design, pages 179–190, 1965.

    Google Scholar 

  13. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass., 1979.

    MATH  Google Scholar 

  14. T. Imielinski, and W. Lipski. Incomplete information in relational databases. JACM, 31(4):761–791, 1984.

    Article  MathSciNet  Google Scholar 

  15. P. Kanellakis. Elements of relational database theory. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B (Formal Models and Semantics), pages 1073–1156. The MIT Press, Cambridge, Mass., 1990.

    Google Scholar 

  16. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

    Google Scholar 

  17. V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. Theoretical Computer Science, 93:115–141, 1992.

    Article  MathSciNet  Google Scholar 

  18. V. S. Subrahmanian. Amalgamating knowledge bases. ACM Transactions on Database Systems, 19(2):291–331, 1994.

    Article  MathSciNet  Google Scholar 

  19. R. Sunderraman and R. Bagai. Uncertainty and inconsistency in relational databases. In S. Chaudhuri, A. Deshpande and R. Krishnamurthy, editors, Advances in Data Management, pages 206–220. Tata McGraw Hill Publishing, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, N., Bagabi, R. (1999). Infinite Relations in Paraconsistent Databases. In: Eder, J., Rozman, I., Welzer, T. (eds) Advances in Databases and Information Systems. ADBIS 1999. Lecture Notes in Computer Science, vol 1691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48252-0_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-48252-0_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66485-7

  • Online ISBN: 978-3-540-48252-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics