Skip to main content

Deriving Type Conflicts and Object Cluster Similarities in Database Schemes by an Automatic and Semantic Approach

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1691))

  • 255 Accesses

Abstract

This paper proposes an automatic, probabilistic approach to the detection of type conflicts and object cluster similarities in database schemes. The type of an object indicates if it is an entity, a relationship or an attribute; type conflicts indicate the existence of objects representing the same concept yet having di.erent types. Object cluster similarities denote similitudes between portions of different schemes. The method we are proposing here is based on considering pairs of objects having different types (resp. pairs of clusters), belonging to different schemes and on measuring their similarity. To this purpose object (resp. cluster) structures as well as object (resp. cluster) neighborhoods are analyzed to verify similitudes and differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Batini, S. Ceri, S.B. Navathe, Conceptual Database Design, The Benjamin/Cummings Publishing Company, 1992.

    Google Scholar 

  2. C. Batini, M. Lenzerini, A methodology for data schema integration in the entity relationship model, IEEE TSE 10(6), 650–664, 1984.

    Google Scholar 

  3. C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis of methodologies for database scheme integration, ACM Computing Surveys, 15(4), 323–364, 1986.

    Article  Google Scholar 

  4. M.W. Bright, A.R. Hurson, S. Pakzad, Automated Resolution of Semantic Heterogeneity in Multidatabases, ACM Transactions on Database Systems 19(2), 212–253, 1994.

    Article  Google Scholar 

  5. S. Castano, V. De Antonellis, Semantic Dictionary Design for Database Interoperability, Proceedings of ICDE’97, Birmingham, United Kingdom, 1997.

    Google Scholar 

  6. P. Fankhauser, M. Kracker, E.J. Neuhold, Semantic vs. Structural Resemblance of Classes, SIGMOD RECORD, 20(4), 59–63, 1991.

    Article  Google Scholar 

  7. Z. Galil, Efficient algorithms for finding maximum matching in graphs, ACM Computing Surveys, 18, 23–38, 1986.

    Article  MathSciNet  Google Scholar 

  8. W. Gotthard, P.C. Lockermann, A. Neufeld, System-Guided View Integration for Object-Oriented Databases, IEEE TKDE 4(1), 1–22, 1992.

    Google Scholar 

  9. L. Palopoli, D. Saccà, D. Ursino, Automatic Derivation of Terminological Properties from Database Schemes, Proc. DEXA’98, 90–99, Wien, Austria, 1998.

    Google Scholar 

  10. L. Palopoli, D. Saccà, D. Ursino, An Automatic Technique for Detecting Type Conflicts in Database Schemes, Proc. ACM CIKM’98, 306–313, Bethesda (Maryland), USA, 1998.

    Google Scholar 

  11. E. Sciore, M. Siegel, A. Rosenthal, Using semantic values to facilitate interoperability among heterogeneous information systems, ACM TODS 19(2), 254–290, 1994.

    Article  Google Scholar 

  12. S. Spaccapietra, C. Parent, View Integration: A Step Forward in Solving Structural Conflicts, IEEE TKDE 6(2), 258–274, 1994.

    Google Scholar 

  13. J.D. Ullman, Information Integration using logical views, Proceedings ICDT’ 97, Delphi, Greece, 19–40, 1997.

    Google Scholar 

  14. D. Ursino, Deriving type conflicts and object cluster similarities in database schemes by an automatic and semantic approach (extended version), Technical Report–DEIS CS Laboratory 99-6. Available from the author.

    Google Scholar 

  15. G. Wiederhold, Mediators in the architecture of future information systems, IEEE Computer, 25(3), 38–49, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ursino, D. (1999). Deriving Type Conflicts and Object Cluster Similarities in Database Schemes by an Automatic and Semantic Approach. In: Eder, J., Rozman, I., Welzer, T. (eds) Advances in Databases and Information Systems. ADBIS 1999. Lecture Notes in Computer Science, vol 1691. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48252-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-48252-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66485-7

  • Online ISBN: 978-3-540-48252-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics