
Collisions for the compression function of MD5

Bert den Boer Antoon Bosselaers
ESAT Laboratory, K.U. Leuven

Kard. Mercierlaan 94
B-3001 Heverlee, Belgium

antoon. borselarrsQriat . kulruvrn. ac .bo

Philips Crypto B.V.
P.O. Box 218

5600 MD Eindhoven
The Netherlands

Abstract. At Crypto '91 Ronald L. Rivest introduced the MD5 Meti
sage Digest Algorithm aa a strengthened version of MD4, differing from
it on nix points. Four changes are due to the two existing attacks on the
two round versions of MD4. The other two changes should additionally
strengthen MD5. However both these changes cannot be described L(I

well-considered. One of them results in an approximate relation between
any Iour consecutive additive constants. The other allows to create col-
lisions for the compression function of MD5. In this paper an algorithm
is described that finds such collisions.
A C program implementing the algorithm establishes a work load of
finding about 2l6 collisions for the first two rounds of the MD5 compres-
sion function to find a collision for the entire four round function. On a
33MHz 80386 based PC the mean run time of this program is about 4
minutes.

1 Introduction

The MD5 Message Digest Algorithm [RiveOl, RiveBSb, SchnSl] introduced by
Ronald L. Rivest at Crypto '91 as a strengthened version of MD4 [RiveOO,
RiveOPa] differs from MD4 on the following points:

- A fourth round has been added.
- The second round function has been changed from the majority function

- The order in which input words are accessed in rounds 2 and 3 is changed.
- The shift amounts in each round have been changed. None are the same now.
- Each step now has a unique additive constant.
- Each step now adds in the result of the previous step.

XY V XZ V YZ to the multiplexer function XZ V Yz.

The first four changes are clearly a consequence of the two existing attacks
on the two round versions of MD4 [MerkSO, dBBogl]. The last two changes
should additionally strengthen MD5. However both these changes can hardly be
described as well-considered.

The unique additive constant in step k contains the first 32 bits of the ab-
solute value of sin(,). This together with the following relation between four
consecutive sine values

(sin(k) + sin(k + 2)) sin(k + 2) = (sin(k + 1) + sin(k + 3)) sin(k + 1)

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 293-304, 1994.
0 Spnnger-Verlag Berlin Heidelberg 1994

294

establishes an approximate relation between any four consecutive additive con-
stants. This could be easily avoided by choosing the next 32 bits in the binary
expansion of the sine values.

The last change however has more serious implications: adding in the result of
the previous step allows to create collisions for the compression function of MD5.
In this paper an algorithm that finds such collisions is described. This means that
one of the design principles behind MD5, namely to design a collision resistant
hash function based on a collision resistant compression function, is not satisfied.
The entire 640-bit input of the compression function is used to produce these
collisions. Therefore they do not result in an attack on the MD5 hash function,
having a single and fixed 128-bit initial value. This is why they are sometimes
called pseudo-collisions.

In Section 2 the necessary notation and definitions are introduced. Section 3
describes and explains the actual collision search algorithm. Section 4 contains
a discussion about the optimal value for a constant of the collision search algo-
rithm. Finally, in Section 5 some details on the implementation as well as an
example collision are given.

2 Notation and definitions

The following notation will be used:

XY , X V Y , X @ Y

X
xBL:s,xms

V c E
MSB, LSB

respectively the bitwise AND, OR and XOR of X
and Y
the bitwise complement of X
the rotation of X to respectively the left and right
by s bit positions
assign to variable V the value of the expression E
respectively most and least significant bit

A word is defined as an unsigned 32-bit quantity taking on only nonnegative
values. The word wise application of the operation * on two 4word buffers
(Al , 811 c1,m and (4, & I cz, Dz) is denoted by

(All &, CI, 01) * (A21 CZ, &) = (A1 * Az, B1 * Bz, CI* CZ, D1* Dz).
MD5 uses the following four functions (one for each round) to process the

input. They all take a 3-word input and produce a single word of output.

f I (X , Y , Z) = XY V Y Z f 3 (X , Y l Z) = x a3 Y a3 2
f , (X,Y, Z) = xz v YZ f4(X,YI Z) = (X vz) e3 Y

Each round i (1 i 5 4) consists of 16 steps, each of which contains a single
application of the round function f i . Hence each round function is used 16 times.
In addition each step of round i uses one of the shift constants sill si2, si3 or
si4, each of which is used four times in each round (see Table 1). In total there
are 48 steps in MD5, grouped in 4 rounds of 16 steps and numbered from 1

295

I Round i 1
1 1 2 3 4

5 4 6

Table 1. The 16 different shift constants of MD5

(step 1 of round 1) through 48 (step 16 of round 4). For a complete specification
of MD5 the reader is referred to the original description (Rive92bI SchnOl]. Note
that in this original description of MD5 the designation f, g, h and i are used
for respectively the round functions f i , f2, fs and f4.

3

First the condition imposed on two inputs to produce the same image under the
compression function of M D 5 will be translated to a condition on the inputs to
the round function of each step of MD5. Next we will show how these conditions
can be (easily) met for the third and fourth round. Finally we will derive an
algorithm that generates an input meeting the conditions for the first and second
round.

Description of the collision search algorithm

3.1

The basis of the MD5 algorithm is a compression function G that takes as input a
4word buffer (A , 8, C, D) and a 16-word message block (X[O], X[l], . . ., X[15]),
and produces a 4-word output (AA, BB, CC, DD):

Derivation of the round function input condition

(AA, BB, cc, DO) = GUA, B, c, D), (NO], XPI, . . . , ~ 1 5 1)) .

The idea of the collision search algorithm is to produce an input to the compres-
sion function such that complementing the MSB of each of the 4 words of the
buffer (A , B , C, D) has no influence on the output of the compression function.
In other words, finding an (A , 8, C, D) and an (X[O], X[1], . . . , X[l5]) such that

G ((A , B , c , D) $ ~ 2 3 ~ , 2 3 ~ , 2 3 ~ , 2 3 ~ ~ , ~ x ~ 0 ~ , x ~ 1 ~ , . . . , x [i q)) =
GKA, B , c, 01, (XIOI ,X[~I , . . ., x[151)). (1)

The compression function G of MD5 consists of four 16-step rounds enclosed by
a feedforward, that adds (modulo 232) to each of the 4 words A , B, C and D
at the end of the fourth round the values they had at the beginning of the first
round. Hence

G (A , B , C, 0) = H (A , B , C, 0) 4 (A , B , C, 01, (2)

296

where H consists of the four 16-step rounds. Substituting G in (1) by (2) together
with the fact that (A + z3l) mod 23z = A @ P1 means that we are looking for
an (A, B, C, D) and an (X[O],X[l], . . ., X[15]) such that

31 31 31 W (A , B, c, D) CB (2 I 2 , 2 , 231)1 (~ [o I , x[11, .. ., x[151)) =
H ((A , B, c, D), (x[o], xp], . . . , x[i51)) CB (231,231,231,231).

Consider a step of the MD5 algorithm

A + B + ((A + fi(B, Cj D) + Xb] + t) < s),
where

- 1 s i 5 4 ,
- Xb] is one of the 16 message words (0 5 j 5 15),
- t is the unique additive constant of the step,
- s is one of the 16 possible shift amounts sil, si2, 52'3 or si4 (1 5 i 5 4), and
- all additions are modulo 232.

The new value of the word A is obtained by adding to the result of the previous
step the result of an addition rotated over s bits to the left. Complementing
the MSB of each of the 4 words A, B, C and D in the right hand side of this
assignment will result in a complementation of the MSB of the updated A, if
the MSB of fi(B, C, D) is complemented when the MSBs of B, C and D are
complemented. This observation leads to the following proposition.

Propositionl. Let T be a 20-word input to the compression function G and
let X, Y and 2 be the MSBs of the $-word input to 4 round function f i . I f T
produces in all sieps inputs t o the round functions fi for which

f i (x m = fi(X,Y,Z)

then ihe 20-word input T and the 20-word input in which the MSBs of the first
four words of T are complemented have the same image under G.

Note that this is made possible by adding in, in each step, the result of the
previous step. This is why this attack does not work for MD4. Note also that
this collision has the property that the message part of the input is the same.

Proposition2. The condition f i (X , Y , 2) = fi(X, Y, 2) is met b y the following
3-tuplcs (X, Y, Z) for respectively f~ , f z , f 3 , and f 4 .

1. (O,O,O), (110,0) and their complements (1,1,1) and (0,1, l),
b. (O , O , 0), (O , O , 1) and their complements (1,1,1) and (1, l,O),
3. all inputs,
I . (O , O , 0) , (0,1,0) and their complements (1,1,1) and (l,O, 1).

297

Proof.
1. x Y v x z = x Y v x z

* (xy v xz) a3 (XU V Y Z) = 0

* (X v Y) (X v 2) a3 (X U v TZ) = 0

* (XU V X Z) @ (XY V T Z) = 0

* Y @ Z = O

2. the same as above, but with X and 2 interchanged.
3. x e3 Y a3 z = X@ Y @ 2 = X@ T@ z
4. (X V 2) a3 Y = (X v z> @ Y

e (X v 2) @(X V Z) = 0
* x e z = o

3.2

From Proposition 2 it follows that a random 20-word input to round 4 has a
probability of 2-lS of fulfilling the condition f4(x,Y,z) = for all
16 steps of the round. Round 3 imposes according to the same proposition no
additional constraints. Due to the pseudo-random behaviour of round 3 it is
save to aaaume that the input at the beginning of round 4 does not significantly
deviate from a random one. A 20-word random input has therefore the same
probability of 2-le of meeting all conditions in both round 3 and 4. It remains
to produce enough 20-word inputs fulfilling all conditions in the first two rounds
in order to generate a collision for the compression'function G.

Collisions for round 3 and 4

3.3

According to Proposition 2 the condition fl(X, T, a = 'm is met by
both (1, 1,l) and (l , O , 0), and their complements. However in each step of the
first round only one of A, B, C and D is updated. Therefore an appearance of
(l,O, 0) in a particular step will lead to (2, l., 0) in the next step (where 2 is
either 1 or 0). Since fl(z, 0 , l) is not equal to f l (z , 1, O), (1,0, 0) cannot appear
as input to the function f1 in the course of the first round. The same applies
to its complement (0,1,1) and to the inputs (0, 0 , l) and (1,1,0) to the second
round function f2. Hence only (1,1,1) or its complement (0, 0,O) are allowed as
inputs to the first and second round functions f1 and f 2 . This input condition is
met by keeping the MSBs of A, B, C and D in the first two rounds equal to one,
except for the value of A at the beginning of the first round and the value of B
at the end of the second round, for which there are no constraints: they are not
used as input to f1 or fz. The idea of the algorithm is therefore to choose the 16
words X[O], X[1], . . . , X[15] in precisely such a way that all the input words to

Collisions for round 1 and 2

298

the fi and f i function keep their MSB on one during the first two rounds. This
is done in the following way.

We start halfway the first two rounds by generating random A, B, C and
D values between the first and second round with MSBs equal to one. We walk
through the second round making all the updated buffer words equal to a “magic
value” N by specific choices for the 16 message words X[O] through X[15]. This
is called the forward walk. The best choice for N depends on the actual values
of the shift constants in the first two rounds and will be discussed in Section 4.
For the current values of the shift constants the best choice for N is F8000000
(hexadecimal notation).

Next we check whether the choices for the message words made in the second
round are also good choices for the first round, i.e., whether they keep the MSB
of the buffer words in the first round on one. We therefore start at the end of
the first round and walk through the first round in the reverse direction. This
is called the backward walk. When we find a buffer word with zero MSB, we
adapt the most significant part of the message word used in that particular step
in such a way that the buffer word now approximates the magic value N. We
then once again start the forward walk at the second round step where this
message word is used, and check whether this change has any influence on the
MSBs of the remaining buffer words of the second round. If so, we make the
necessary changes to the other (i,e., least significant) part of the message words
in order that the buffer words approximate once again the magic value. These
least significant parts of the message words become the most significant after
the rotation in the forward walk steps. Next we start once again the backward
walk. This way we go to and fro until we reach the beginning of the first round,
at which point we found a message block keeping the MSBs of the buffer words
in the first two rounds on one.

First a description of the initialization procedure is given, which consists of
a forward walk and partial backward walk.

1. Initialize (A , B , C, D).
Generate random A, 8, C, D values between the first and second round with
MSBs equal to one.

2.1 Step forwards (i.e., into round 2) and make the updated buffer words
in the first six steps of round 2 (step 17 through 22) equal to the magic
value N by a specific choice of the message words used in the first six
steps: respectively X[1], X[6], X[ll], X[O], X[5] and X[lO].

2.2 Do the next step (step 23) forwards making the updated value of C equal
to N by a specific choice for X[15].

2. Initialize (X[O],X[I], . . .,X[IS]).

X[15] = ((N - D) B 623) - C - f Z (0 , A , B) - 3634488961

Do the last step of the first round (step 16) backwards making the value
of B at the beginning of step 16 equal to N by another specific choice
for X[15].

299

X[15] = ((B - C) > 514) - N - fi(C, D, A) - 1236535329

Of course we get different values for X[15] but we take the s23 MSBs of
the backward step solution and the other 32 - s23 bits of the forward
step solution. This way both newly computed values of C (forward step)
and B (backward step) are approximations of N:

C’ = D + (C + n (D , A, B) + X[15] + 3634488961) < ~ 2 3 ,

B‘ = ((B - C) > ~ 1 4) - X[15] - fi(C, D, A) - 1236535329.

In the forward step the s23 bits of the backward solution become the
LSBs after the rotation of the sum over s23 bits, in the backward step
the bits of the forward solution are on the least significant positions as
well.

2.3 Step forwards (steps 24 and 25) computing X[4] and X[9] as in step 2.1
2.4 Put X[14] equal to the 822 MSBs of the backward solution of step 15

2.5 Step forwards (steps 27 and 28) computing X[3] and X[8] as in step 2.1
2.6 Put X[13] equal to the s21 MSBs of the backward solution of step 14

2.7 Step forwards (steps 30 and 31) computing X[2] and X[7] as in step 2.1
2.8 Put X[12] equal to the backward solution of step 12, as there are no

constraints on the value of B at the end of the second round (step 32).

Next an informal and formal description of the actual algorithm is given. First
we define three functions used in these descriptions. Let

and the 32 - 622 LSBs of the forward solution of step 26.

and the 32 - s21 LSBs of the forward solution of step 29.

- sZ[j] be the shift constant used in step j of the second round (17 32).
- fw[i] be the step in the forward walk (i.e., the second round) using the input

word X[i - 11 (1 5 i 5 IS),
- bwb] be the step in the backward walk (i.e., the first round) using the mes-

sage word that is used in the j th step of the forward walk (17 5 j 5 32).
Hence the functions f w u and bwn are each others inverse: if j = fw[i] is the
step in the forward walk using X [i - 11, then i = bwb] is the step in the
backward walk using the message word that is used in the j t h step of the
forward walk (i.e., X[i - 11).

After the initialization of both (A, 8, C, 0) and (X[O], X[1], . . . , X[15]) as al-
ready described, we step backwards checking whether our choices for the x[.]’S
80 far are also good choices for the backward walk i.e., whether at the Ceginning
of each first round step the MSB of the buffer word being updated is equal to
one. If that is not the case for step i the first s2[fw[i]] (i.e., the shift constant
of the step in the forward walk using X[i - 11) bits of X[i - 11 are adapted such
that the value of the buffer word at the beginning of that step is, given these
limitations, the best possible approximation of the magic value N. Alas, now all

j

300

values in the forward walk from step / w [q onwards change. The first changes are
mild, but soon they will accumulate. But as long as the MSBs of the buffer words
A, B, C and D do not change, we keep the X [.] values as they are. However if
in step j of the forward walk the MSB of a buffer word changes, we adapt all or
part of the bits of the message word used in that step (Lee, X[bw[j] - 11) to let
the updated value of the buffer word approximate once again the magic value
N. For this purpose we can use all bits of X(bwlj] - 11 in case, up to this point,
it has not been used yet in the backward walk (i.e., if bwb] < i). Otherwise we
combine the forward and backward solutions for X[bwb] - 11. Having completed
the entire forward walk in the same way, we once again start the backward walk
at step k, where X [t - 11 is the message word with the highest index that was
changed in the forward walk, and we check whether these new choices for the
X[.]’s are also good choices for the backward walk. This way we go to and fro,
until we find a solution meeting all conditions in both rounds. Below the formal
description of the algorithm is given together with a flowchart in Figure 1.

3. The actual algorithm.
3.0 Set i t 12.
3.1 If i = 1 , a solution has been found as there are no constraints on the

value of A at the beginning of the first round.
3.2 Do step i backwards. The value at the beginning of step i of the buffer

word that is updated in this step, is calculated using the known value at
the end of the step and the value of X[i - 11 from the forward walk.

3.3 If the MSB of the new value is 1, decrement i and goto 3.1.
3.4 Set j + f w [q , k 6 i (k keeps track of the highest first round step using

a message word that has been adapted during the forward walk). Adapt
the s2b] MSBs of X[i - 11 to let the value of the buffer word at the
beginning of first round step i approximate the magic value N.

3.5 If j = 32, set i t k and goto 3.1, as there are no constraints on the
value of B at the end of the second round.

3.6 Do step j forwards.
3.7 If the MSB of the updated buffer word is 1, increment j and goto 3.5.
3.8 If bwb] < i, compute X[bwb] - 11 as in step 2.1 (i.e., if the message

word used in this step has not been used yet in the backward walk, then
use all the bits of this message word to make the updated value of the
buffer word equal to IV). Increment j and goto 3.5.

3.9 Adapt the 32 - s2lj] LSBs of X[bwb] - 11 to let the updated value of the
buffer word in step j approximate the magic value N (i.e., in case the
message word used in this step has already been used in the backward
walk).

3.10 If bwb] > k , set k + bwb] (the highest first round step so far using
a message word that has been changed during this forward walk, and
hence the place to start a new backward walk).

3.11 Increment j and goto 3.5.

301

~ 2 [j] LSBS of X[bt~b] - 11 -

{ I i + 1 2 I

i + - i - l]
b

Step i backwards

j - f4;l

+ k + i
I

Adapt s2[j] MSBs of x[; - 11

Step j forwards LJ

7

302

There is of course a real danger for the algorithm to get in an endless loop.
Therefore we count the number of times an X[.] value has been adapted. If that
number becomes larger than a certain value, we stop and try another initial
value for the 4-word buffer (A, B, C, D) at the end of the first round. Computer
simulations show that the algorithm either converges very quickly to a solution
or gets stuck into an endless loop, so that this value can be chosen quite small
(e.g., 300). The closer the shifts in the second round are to 16, the smaller the
probability to get into such an endless loop, since then nearly the same number of
bits of the forward and the backward solution are used. The part of the backward
step solution of X[.] will therefore change the MSB of the forward step buffer
with a relatively small probability, and vice versa. However for the steps using
the second round shift 821 the situation is totally different: here only five bits of
the backward step solution are used, making it quite probable that the MSB of
the backward step buffer gets changed by the part of the forward step solution.
A good choice for the magic value can reduce the probability that this happens
to a minimum.

4 Choice of the magic value

The MSB of the magic value N must of course be one, as it is intended to be the
intermediate value of the buffer words A, B, C and D in the first two rounds.
Moreover at least one other bit of N must be nonzero to allow small negative
changes to N without affecting its MSB. The more significant this bit is, the
less susceptible N becomes to a change of its MSB as a result of a subtraction.
The critical steps in this regard are the first round steps 2, 6, 10 and 14, using
respectively message words X[1], X [5] , X[9] and X[13]. In the second round
these message words are used in combination with the shift constant s2l = 5,
which means that only 5 bits of the backward walk solution are used to let
the backward walk buffer word approximate the magic value. The magic value
should therefore be greater or equal to 0x88000000, i.e., all 32-bit values with
at least two of the five MSBs on one and the 27 LSBs on zero are ‘good’ magic
values. Computer simulations show that the best choice for N is OxF8000000:
for only about 0.15% of all initial values the algorithm gets caught in an endless
loop (see Figure 2).

Instead of using a single magic value for the entire first two rounds, we can of
course use different magic values for each step. As we have shown in the case of a
single magic value, the number of nonzero MSBs of the best magic value is related
to the shift constant used in a particular step, i.e., to the number of bits of the
message word used in that step that can be changed to approximate this magic
value. Therefore it makes no sense to choose more than eight different magic
values: four for the forward walk and four for the backward walk. Computer
simulations show that in doing so the number of endless loops can be reduced to
about 0.02%, but the mean time to find a solution increases by about 25%. As
the figure of 0.15% endless loops is very much acceptable, we decided to stick to
a single magic value of OxF8000000.

303

- -
0 - 0 -

- 0 -
- 0

-

- 0
- 0 -

0 0
0 0

0 -
0

- -
1 1 1 1 1 1 1 1 1 1 1 1 1

Percent age
of endless

loops

3.5
3

2.5

2
1.5

1
0.5

0

Magic value (eight MSBs, in hex)

Fig.2. Percentage of endless loops for the different ‘good’ magic values. Only the 8
MSBs of each magic value are indicated, the 24 LSBs are all zero.

5 Implementation

A C program has been written implementing the algorithm. It establishes a
work load of finding about 216 collisions for the first two rounds of the MD5
compression function to find a collision for the entire four round function. On
a 33MHz 80386 based PC usin a 32-bit compiler the mean time to find such FA
collision is about 4 minutes (21B trials). However the variance is quite dramatic.
Times have been observed ranging from about 1 second (317 trials) to more than
25 minutes (396324 trials). As an example, the following two 20-word inputs
consisting of the common S w o r d message part (hexadecimal notation)

5FFBB485 B73256D8 19DF08E4 11054166 22COOE98 450A05C4 5F53A940 9DDCICF8
DADABBDB 8A43597A 4CA51993 E7DBi2E5 lFlC0317 9A3BAAD6 B275B7BB OP09CFD5

and respectively the 4-word input buffers I1 and I2

11: 399349134 87609442 F7DFE793 83D49001
12: B99E49D4 07669442 77DFE793 03D49001

are both compressed to the same 4-word output buffer

P80668D5 P8AB5C93 C93998F5 D007A636

References

[Rivego] R.L. Rivest, “The MD4 message digest dporithm,” Aduancer in Cryptol-
ogy, Proc. Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991,
pp. 303-311.

[MerkSO] R.C. Merkle, Unpublished result, 1990.
[dBBo91] B. den Boer and A. Bosselaers, “An attack on the last two rounds of MD4,”

Advances in Cryptoiogy, Proc. Crypto’gf, LNCS 576, J. Feigenbaum, Ed.,
Springer-Verlag, 1992, pp. 194-203.

304

[Rive911 R.L. Rivest, ‘The MD5 message digest algorithm,” Presented at the rump
session of Crypto’91.

[Schngl] B. Schneier, ‘One-way hash functions,” Dr. Dobb’s Journal, Vol. 16, NO. 9,

[Rivesla] R.L. Rivest, “The MD4 message-digest algorithm,” Request for Comment8
(RFC) f320, Internet Activities Board, Internet Privacy Task Force, April
1992.

[RiveOZb] R.L. Rivest, “The MD5 message-digest algorithm,” Request for Comments
(RFC) 1321, Internet Activities Board, Internet Privacy Task Force, April
1992.

1991, pp. 148-151.

	Collisions for the compression function of MD5
	Introduction
	Notation and definitions
	Description of the collision search algorithm
	Derivation of the round function input condition
	Collisions for round 3 and 4
	Collisions for round 1 and 2

	Choice of the magic value
	Implementation
	References

