
Collisions for the compression function of MD5 

Bert den Boer Antoon Bosselaers 
ESAT Laboratory, K.U. Leuven 

Kard. Mercierlaan 94 
B-3001 Heverlee, Belgium 

antoon. borselarrsQriat . kulruvrn. ac .bo 

Philips Crypto B.V. 
P.O. Box 218 

5600 MD Eindhoven 
The Netherlands 

Abstract. At Crypto '91 Ronald L. Rivest introduced the MD5 Meti 
sage Digest Algorithm aa a strengthened version of MD4, differing from 
it on nix points. Four changes are due to the two existing attacks on the 
two round versions of MD4. The other two changes should additionally 
strengthen MD5. However both these changes cannot be described L(I 

well-considered. One of them results in an approximate relation between 
any Iour consecutive additive constants. The other allows to create col- 
lisions for the compression function of MD5. In this paper an algorithm 
is described that finds such collisions. 
A C program implementing the algorithm establishes a work load of 
finding about 2l6 collisions for the first two rounds of the MD5 compres- 
sion function to find a collision for the entire four round function. On a 
33MHz 80386 based PC the mean run time of this program is about 4 
minutes. 

1 Introduction 

The MD5 Message Digest Algorithm [RiveOl, RiveBSb, SchnSl] introduced by 
Ronald L. Rivest at Crypto '91 as a strengthened version of MD4 [RiveOO, 
RiveOPa] differs from MD4 on the following points: 

- A fourth round has been added. 
- The second round function has been changed from the majority function 

- The order in which input words are accessed in rounds 2 and 3 is changed. 
- The shift amounts in each round have been changed. None are the same now. 
- Each step now has a unique additive constant. 
- Each step now adds in the result of the previous step. 

XY V XZ V YZ to the multiplexer function XZ V Yz. 

The first four changes are clearly a consequence of the two existing attacks 
on the two round versions of MD4 [MerkSO, dBBogl]. The last two changes 
should additionally strengthen MD5. However both these changes can hardly be 
described as well-considered. 

The unique additive constant in step k contains the first 32 bits of the ab- 
solute value of sin(,). This together with the following relation between four 
consecutive sine values 

(sin(k) + sin(k + 2)) sin(k + 2) = (sin(k + 1) + sin(k + 3)) sin(k + 1) 

T. Helleseth (Ed.): Advances in Cryptology - EUROCRYPT '93, LNCS 765, pp. 293-304, 1994. 
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establishes an approximate relation between any four consecutive additive con- 
stants. This could be easily avoided by choosing the next 32 bits in the binary 
expansion of the sine values. 

The last change however has more serious implications: adding in the result of 
the previous step allows to create collisions for the compression function of MD5. 
In this paper an algorithm that finds such collisions is described. This means that 
one of the design principles behind MD5, namely to design a collision resistant 
hash function based on a collision resistant compression function, is not satisfied. 
The entire 640-bit input of the compression function is used to produce these 
collisions. Therefore they do not result in an attack on the MD5 hash function, 
having a single and fixed 128-bit initial value. This is why they are sometimes 
called pseudo-collisions. 

In Section 2 the necessary notation and definitions are introduced. Section 3 
describes and explains the actual collision search algorithm. Section 4 contains 
a discussion about the optimal value for a constant of the collision search algo- 
rithm. Finally, in Section 5 some details on the implementation as well as an 
example collision are given. 

2 Notation and definitions 

The following notation will be used: 

XY , X V Y , X @ Y 

X 
xBL:s,xms 

V c E  
MSB, LSB 

respectively the bitwise AND, OR and XOR of X 
and Y 
the bitwise complement of X 
the rotation of X to respectively the left and right 
by s bit positions 
assign to variable V the value of the expression E 
respectively most and least significant bit 

A word is defined as an unsigned 32-bit quantity taking on only nonnegative 
values. The word wise application of the operation * on two 4word buffers 
(Al ,  811 c1,m and (4, & I  cz, Dz) is denoted by 

(All &, CI, 01) * (A21 CZ, &) = (A1 * Az, B1 * Bz, CI* CZ, D1* Dz). 
MD5 uses the following four functions (one for each round) to process the 

input. They all take a 3-word input and produce a single word of output. 

f I ( X , Y , Z )  = XY V Y Z  f 3 ( X , Y l  Z) = x a3 Y a3 2 
f , (X,Y,  Z) = xz v YZ f4(X,YI Z) = (X vz) e3 Y 

Each round i (1 i 5 4) consists of 16 steps, each of which contains a single 
application of the round function f i .  Hence each round function is used 16 times. 
In addition each step of round i uses one of the shift constants sill si2, si3 or 
si4, each of which is used four times in each round (see Table 1). In total there 
are 48 steps in MD5, grouped in 4 rounds of 16 steps and numbered from 1 
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I Round i 1 
1 1  2 3 4 

5 4 6 

Table 1. The 16 different shift constants of MD5 

(step 1 of round 1) through 48 (step 16 of round 4). For a complete specification 
of MD5 the reader is referred to  the original description (Rive92bI SchnOl]. Note 
that in this original description of MD5 the designation f, g, h and i are used 
for respectively the round functions f i ,  f2, fs and f4. 

3 

First the condition imposed on two inputs to produce the same image under the 
compression function of M D 5  will be translated to a condition on the inputs to  
the round function of each step of MD5.  Next we will show how these conditions 
can be (easily) met for the third and fourth round. Finally we will derive an 
algorithm that generates an input meeting the conditions for the first and second 
round. 

Description of the collision search algorithm 

3.1 

The basis of the MD5 algorithm is a compression function G that takes as input a 
4word buffer ( A ,  8, C, D) and a 16-word message block (X[O], X[l], . . ., X[15]), 
and produces a 4-word output (AA,  BB,  CC, DD): 

Derivation of the round function input condition 

(AA, BB, cc, DO) = GUA, B, c, D), (NO], XPI, . . . , ~ 1 5 1 ) ) .  

The idea of the collision search algorithm is to  produce an input to  the compres- 
sion function such that complementing the MSB of each of the 4 words of the 
buffer ( A ,  B ,  C, D) has no influence on the output of the compression function. 
In other words, finding an ( A ,  8, C, D) and an (X[O], X[1], . . . , X[l5]) such that 

G ( ( A , B , c , D ) $  ~ 2 3 ~ , 2 3 ~ , 2 3 ~ , 2 3 ~ ~ , ~ x ~ 0 ~ , x ~ 1 ~ ,  . . . , x [ i q ) )  = 
GKA, B ,  c, 01, (XIOI ,X[~I , .  . ., x[151)). (1) 

The compression function G of MD5 consists of four 16-step rounds enclosed by 
a feedforward, that adds (modulo 232) to each of the 4 words A ,  B, C and D 
at the end of the fourth round the values they had at the beginning of the first 
round. Hence 

G ( A ,  B ,  C, 0)  = H ( A ,  B ,  C, 0) 4 ( A ,  B ,  C, 01, (2) 
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where H consists of the four 16-step rounds. Substituting G in (1) by (2) together 
with the fact that (A + z3l) mod 23z = A @ P1 means that we are looking for 
an (A, B, C, D) and an (X[O],X[l], . . ., X[15]) such that 

31 31 31 W ( A ,  B, c, D) CB (2 I 2 , 2  , 231)1 ( ~ [ o I ,  x[11, .. ., x[151)) = 
H ( ( A ,  B, c, D), (x[o], xp], . . . , x[i51)) CB (231,231,231,231). 

Consider a step of the MD5 algorithm 

A + B + ( ( A  + fi(B, Cj D) + Xb] + t )  < s), 
where 

- 1 s i 5 4 ,  
- Xb] is one of the 16 message words (0 5 j 5 15), 
- t is the unique additive constant of the step, 
- s is one of the 16 possible shift amounts sil, si2, 52'3 or si4 (1 5 i 5 4), and 
- all additions are modulo 232. 

The new value of the word A is obtained by adding to the result of the previous 
step the result of an addition rotated over s bits to the left. Complementing 
the MSB of each of the 4 words A, B, C and D in the right hand side of this 
assignment will result in a complementation of the MSB of the updated A, if 
the MSB of fi(B, C, D) is complemented when the MSBs of B, C and D are 
complemented. This observation leads to the following proposition. 

Propositionl. Let T be a 20-word input to the compression function G and 
let X, Y and 2 be the MSBs of the $-word input to 4 round function f i .  I f  T 
produces in  all sieps inputs t o  the round functions fi for  which 

f i ( x m  = fi(X,Y,Z) 

then ihe 20-word input T and the 20-word input in which the MSBs of the first 
four words of T are complemented have the same image under G. 

Note that this is made possible by adding in, in each step, the result of the 
previous step. This is why this attack does not work for MD4. Note also that 
this collision has the property that the message part of the input is the same. 

Proposition2. The condition f i ( X ,  Y ,  2) = fi(X, Y, 2) is met b y  the following 
3-tuplcs (X, Y,  Z )  for respectively f~ , f z ,  f 3 ,  and f 4 .  

--- 

1. (O,O,O), (110,0) and their complements (1,1,1) and (0,1, l), 
b. ( O , O ,  0), ( O , O ,  1) and their complements (1,1,1) and (1, l,O), 
3. all inputs, 
I .  ( O , O ,  0 ) ,  (0,1,0) and their complements (1,1,1) and (l,O, 1). 
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Proof. 
1. x Y v x z = x Y v x z  

* (xy v xz) a3 (XU V Y Z )  = 0 

* ( X  v Y ) ( X  v 2) a3 ( X U  v TZ) = 0 

* (XU V X Z )  @ (XY V T Z )  = 0 

* Y @ Z = O  

2. the same as above, but with X and 2 interchanged. 
3. x e3 Y a3 z = X@ Y @ 2 = X@ T@ z 
4. ( X V  2) a3 Y = ( X  v z> @ Y 

e ( X v  2) @(X V Z )  = 0 
* x e z = o  

3.2 

From Proposition 2 it follows that a random 20-word input to round 4 has a 
probability of 2-lS of fulfilling the condition f4(x,Y,z) = for all 
16 steps of the round. Round 3 imposes according to the same proposition no 
additional constraints. Due to the pseudo-random behaviour of round 3 it is 
save to aaaume that the input at the beginning of round 4 does not significantly 
deviate from a random one. A 20-word random input has therefore the same 
probability of 2-le of meeting all conditions in both round 3 and 4. It remains 
to produce enough 20-word inputs fulfilling all conditions in the first two rounds 
in order to generate a collision for the compression'function G. 

Collisions for round 3 and 4 

3.3 

According to Proposition 2 the condition fl(X, T, a = 'm is met by 
both (1, 1,l) and ( l , O ,  0), and their complements. However in each step of the 
first round only one of A, B, C and D is updated. Therefore an appearance of 
(l,O, 0) in a particular step will lead to (2, l., 0) in the next step (where 2 is 
either 1 or 0). Since fl(z, 0 , l )  is not equal to f l ( z ,  1, O), (1,0, 0) cannot appear 
as input to the function f1 in the course of the first round. The same applies 
to its complement (0,1,1) and to the inputs (0, 0 , l )  and (1,1,0) to the second 
round function f2. Hence only (1,1,1) or its complement (0, 0,O) are allowed as 
inputs to the first and second round functions f1 and f 2 .  This input condition is 
met by keeping the MSBs of A, B, C and D in the first two rounds equal to one, 
except for the value of A at the beginning of the first round and the value of B 
at the end of the second round, for which there are no constraints: they are not 
used as input to f1 or fz.  The idea of the algorithm is therefore to choose the 16 
words X[O], X[1], . . . , X[15] in precisely such a way that all the input words to 

Collisions for round 1 and 2 
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the fi and f i  function keep their MSB on one during the first two rounds. This 
is done in the following way. 

We start halfway the first two rounds by generating random A, B, C and 
D values between the first and second round with MSBs equal to one. We walk 
through the second round making all the updated buffer words equal to a “magic 
value” N by specific choices for the 16 message words X[O] through X[15]. This 
is called the forward walk. The best choice for N depends on the actual values 
of the shift constants in the first two rounds and will be discussed in Section 4. 
For the current values of the shift constants the best choice for N is F8000000 
(hexadecimal notation). 

Next we check whether the choices for the message words made in the second 
round are also good choices for the first round, i.e., whether they keep the MSB 
of the buffer words in the first round on one. We therefore start at the end of 
the first round and walk through the first round in the reverse direction. This 
is called the backward walk. When we find a buffer word with zero MSB, we 
adapt the most significant part of the message word used in that particular step 
in such a way that the buffer word now approximates the magic value N. We 
then once again start the forward walk at the second round step where this 
message word is used, and check whether this change has any influence on the 
MSBs of the remaining buffer words of the second round. If so, we make the 
necessary changes to the other (i,e., least significant) part of the message words 
in order that the buffer words approximate once again the magic value. These 
least significant parts of the message words become the most significant after 
the rotation in the forward walk steps. Next we start once again the backward 
walk. This way we go to and fro until we reach the beginning of the first round, 
at which point we found a message block keeping the MSBs of the buffer words 
in the first two rounds on one. 

First a description of the initialization procedure is given, which consists of 
a forward walk and partial backward walk. 

1. Initialize (A ,  B ,  C, D). 
Generate random A, 8, C, D values between the first and second round with 
MSBs equal to one. 

2.1 Step forwards (i.e., into round 2) and make the updated buffer words 
in the first six steps of round 2 (step 17 through 22) equal to the magic 
value N by a specific choice of the message words used in the first six 
steps: respectively X[1], X[6], X[ll], X[O], X[5] and X[lO]. 

2.2 Do the next step (step 23) forwards making the updated value of C equal 
to N by a specific choice for X[15]. 

2. Initialize (X[O],X[I], . . .,X[IS]). 

X[15] = ( ( N  - D) B 623) - C - f Z ( 0 ,  A ,  B) - 3634488961 

Do the last step of the first round (step 16) backwards making the value 
of B at the beginning of step 16 equal to N by another specific choice 
for X[15]. 
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X[15] = ( ( B  - C) > 514) - N - fi(C, D,  A )  - 1236535329 

Of course we get different values for X[15] but we take the s23 MSBs of 
the backward step solution and the other 32 - s23 bits of the forward 
step solution. This way both newly computed values of C (forward step) 
and B (backward step) are approximations of N: 

C’ = D + (C + n ( D ,  A,  B) + X[15] + 3634488961) < ~ 2 3 ,  

B‘ = ((B - C) > ~ 1 4 )  - X[15] - fi(C, D, A )  - 1236535329. 

In the forward step the s23 bits of the backward solution become the 
LSBs after the rotation of the sum over s23 bits, in the backward step 
the bits of the forward solution are on the least significant positions as 
well. 

2.3 Step forwards (steps 24 and 25) computing X[4] and X[9] as in step 2.1 
2.4 Put X[14] equal to the 822 MSBs of the backward solution of step 15 

2.5 Step forwards (steps 27 and 28) computing X[3] and X[8] as in step 2.1 
2.6 Put X[13] equal to the s21 MSBs of the backward solution of step 14 

2.7 Step forwards (steps 30 and 31) computing X[2] and X[7] as in step 2.1 
2.8 Put X[12] equal to the backward solution of step 12, as there are no 

constraints on the value of B at the end of the second round (step 32). 

Next an informal and formal description of the actual algorithm is given. First 
we define three functions used in these descriptions. Let 

and the 32 - 622 LSBs of the forward solution of step 26. 

and the 32 - s21 LSBs of the forward solution of step 29. 

- sZ[j] be the shift constant used in step j of the second round (17 32). 
- fw[i] be the step in the forward walk (i.e., the second round) using the input 

word X[i - 11 (1 5 i 5 IS), 
- bwb] be the step in the backward walk (i.e., the first round) using the mes- 

sage word that is used in the j th  step of the forward walk (17 5 j 5 32). 
Hence the functions f w u  and bwn are each others inverse: if j = fw[i] is the 
step in the forward walk using X [ i  - 11, then i = bwb] is the step in the 
backward walk using the message word that is used in the j t h  step of the 
forward walk (i.e., X[i - 11). 

After the initialization of both (A, 8, C, 0) and (X[O], X[1], . . . , X[15]) as al- 
ready described, we step backwards checking whether our choices for the x[.]’S 
80 far are also good choices for the backward walk i.e., whether at the Ceginning 
of each first round step the MSB of the buffer word being updated is equal to 
one. If that is not the case for step i the first s2[fw[i]] (i.e., the shift constant 
of the step in the forward walk using X[i - 11) bits of X[i - 11 are adapted such 
that the value of the buffer word at the beginning of that step is, given these 
limitations, the best possible approximation of the magic value N. Alas, now all 

j 
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values in the forward walk from step / w [ q  onwards change. The first changes are 
mild, but soon they will accumulate. But as long as the MSBs of the buffer words 
A, B, C and D do not change, we keep the X [ . ]  values as they are. However if 
in step j of the forward walk the MSB of a buffer word changes, we adapt all or 
part of the bits of the message word used in that step (Lee, X[bw[j]  - 11) to let 
the updated value of the buffer word approximate once again the magic value 
N. For this purpose we can use all bits of X(bwlj]  - 11 in case, up to this point, 
it has not been used yet in the backward walk (i.e., if bwb] < i). Otherwise we 
combine the forward and backward solutions for X[bwb]  - 11. Having completed 
the entire forward walk in the same way, we once again start the backward walk 
at step k, where X [ t  - 11 is the message word with the highest index that was 
changed in the forward walk, and we check whether these new choices for the 
X[.]’s  are also good choices for the backward walk. This way we go to and fro, 
until we find a solution meeting all conditions in both rounds. Below the formal 
description of the algorithm is given together with a flowchart in Figure 1. 

3. The actual algorithm. 
3.0 Set i t 12.  
3.1 If i = 1 ,  a solution has been found as there are no constraints on the 

value of A at the beginning of the first round. 
3.2 Do step i backwards. The value at the beginning of step i of the buffer 

word that is updated in this step, is calculated using the known value at 
the end of the step and the value of X[i - 11 from the forward walk. 

3.3 If the MSB of the new value is 1, decrement i and goto 3.1. 
3.4 Set j + f w [ q ,  k 6 i (k keeps track of the highest first round step using 

a message word that has been adapted during the forward walk). Adapt 
the s2b]  MSBs of X[i - 11 to let the value of the buffer word at the 
beginning of first round step i approximate the magic value N. 

3.5 If j = 32, set i t k and goto 3.1, as there are no constraints on the 
value of B at the end of the second round. 

3.6 Do step j forwards. 
3.7 If the MSB of the updated buffer word is 1, increment j and goto 3.5. 
3.8 If bwb] < i, compute X[bwb]  - 11 as in step 2.1 (i.e., if the message 

word used in this step has not been used yet in the backward walk, then 
use all the bits of this message word to make the updated value of the 
buffer word equal to IV). Increment j and goto 3.5. 

3.9 Adapt the 32 - s2lj] LSBs of X[bwb]  - 11 to let the updated value of the 
buffer word in step j approximate the magic value N (i.e., in case the 
message word used in this step has already been used in the backward 
walk). 

3.10 If bwb] > k ,  set k + bwb] (the highest first round step so far using 
a message word that has been changed during this forward walk, and 
hence the place to start a new backward walk). 

3.11 Increment j and goto 3.5. 
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~ 2 [ j ]  LSBS of X[bt~b]  - 11 - 

{ I i + 1 2  I 

i + - i - l ]  
b 

Step i backwards 

j - f4;l 

+ k + i  
I 

Adapt s2[j] MSBs of x[; - 11 

Step j forwards LJ 

7 



302 

There is of course a real danger for the algorithm to get in an endless loop. 
Therefore we count the number of times an X[.] value has been adapted. If that 
number becomes larger than a certain value, we stop and try another initial 
value for the 4-word buffer (A, B, C, D) at the end of the first round. Computer 
simulations show that the algorithm either converges very quickly to  a solution 
or gets stuck into an endless loop, so that this value can be chosen quite small 
(e.g., 300). The closer the shifts in the second round are to  16, the smaller the 
probability to get into such an endless loop, since then nearly the same number of 
bits of the forward and the backward solution are used. The part of the backward 
step solution of X[.] will therefore change the MSB of the forward step buffer 
with a relatively small probability, and vice versa. However for the steps using 
the second round shift 821 the situation is totally different: here only five bits of 
the backward step solution are used, making it quite probable that the MSB of 
the backward step buffer gets changed by the part of the forward step solution. 
A good choice for the magic value can reduce the probability that this happens 
to a minimum. 

4 Choice of the magic value 

The MSB of the magic value N must of course be one, as it is intended to be the 
intermediate value of the buffer words A, B, C and D in the first two rounds. 
Moreover at least one other bit of N must be nonzero to  allow small negative 
changes to N without affecting its MSB. The more significant this bit is, the 
less susceptible N becomes to a change of its MSB as a result of a subtraction. 
The critical steps in this regard are the first round steps 2, 6, 10 and 14, using 
respectively message words X[1], X [ 5 ] ,  X[9] and X[13]. In the second round 
these message words are used in combination with the shift constant s2l = 5, 
which means that only 5 bits of the backward walk solution are used to let 
the backward walk buffer word approximate the magic value. The magic value 
should therefore be greater or equal to 0x88000000, i.e., all 32-bit values with 
at least two of the five MSBs on one and the 27 LSBs on zero are ‘good’ magic 
values. Computer simulations show that the best choice for N is OxF8000000: 
for only about 0.15% of all initial values the algorithm gets caught in an endless 
loop (see Figure 2). 

Instead of using a single magic value for the entire first two rounds, we can of 
course use different magic values for each step. As we have shown in the case of a 
single magic value, the number of nonzero MSBs of the best magic value is related 
to the shift constant used in a particular step, i.e., to the number of bits of the 
message word used in that step that can be changed to approximate this magic 
value. Therefore it makes no sense to choose more than eight different magic 
values: four for the forward walk and four for the backward walk. Computer 
simulations show that in doing so the number of endless loops can be reduced to 
about 0.02%, but the mean time to find a solution increases by about 25%. As 
the figure of 0.15% endless loops is very much acceptable, we decided to stick to  
a single magic value of OxF8000000. 
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Fig.2. Percentage of endless loops for the different ‘good’ magic values. Only the 8 
MSBs of each magic value are indicated, the 24 LSBs are all zero. 

5 Implementation 

A C program has been written implementing the algorithm. It establishes a 
work load of finding about 216 collisions for the first two rounds of the MD5 
compression function to find a collision for the entire four round function. On 
a 33MHz 80386 based PC usin a 32-bit compiler the mean time to find such FA 
collision is about 4 minutes (21B trials). However the variance is quite dramatic. 
Times have been observed ranging from about 1 second (317 trials) to more than 
25 minutes (396324 trials). As an example, the following two 20-word inputs 
consisting of the common S w o r d  message part (hexadecimal notation) 

5FFBB485 B73256D8 19DF08E4 11054166 22COOE98 450A05C4 5F53A940 9DDCICF8 
DADABBDB 8A43597A 4CA51993 E7DBi2E5 lFlC0317 9A3BAAD6 B275B7BB OP09CFD5 

and respectively the 4-word input buffers I1 and I2 

11: 399349134 87609442 F7DFE793 83D49001 
12: B99E49D4 07669442 77DFE793 03D49001 

are both compressed to the same 4-word output buffer 

P80668D5 P8AB5C93 C93998F5 D007A636 
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