Skip to main content

The Evolution of Computation in Co-evolving Demes of Non-uniform Cellular Automata for Global Synchronisation

  • Conference paper
Advances in Artificial Life (ECAL 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1674))

Included in the following conference series:

Abstract

We study the evolution of computation performed by non-uniform cellular automata in which global information processing appears at two different levels of self-organisation. In our model, the first level of self-organisation is characterised by interactions among cellular macrostructures or computational demes which compete for room in a finite grid of cells. This level is related to the formation, evolution and extinction of macrostructures, and it is designed in a completely local manner. The second level of self-organisation refers to the interactions among the cells within the demes. The model, derived from the cellular programming approach, allows global computation to occur as a result of many local interactions among computational demes of interacting cells. The study reveals some of the mechanisms by which co-evolving demes of non-uniform cellular automata perform non-trivial computation, such as the synchronisation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and quenched inhomogeneous cellular automata. J. Stat. Phys., 45:875–883, 1986.

    Article  MathSciNet  Google Scholar 

  2. H. Gutowitz. Cellular Automata: Theory and Experiment. MIT Press, Cambridge, MA, 1991.

    MATH  Google Scholar 

  3. M. Sipper. Non-uniform cellular automata: Evolution in rule space and formation of complex structures. In R. A. Brooks and P. Maes, eds., Artificial Life IV, pp. 394–399. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  4. P. Hogeweg. Mirror beyond mirror, puddles of life. In C. Langton, ed., Artificial Life, pp. 297–316. Addison-Wesley, Reading, MA, 1988.

    Google Scholar 

  5. K. Lindgren and M. G. Nordahl. Artificial food webs. In C. G. Langton, ed., Artificial Life III, pp. 73–103. Addison-Wesley, Reading, MA, 1994.

    Google Scholar 

  6. A. R. Johnson. Evolution of a size-structured, predator-prey community. In C. G. Langton, ed., Artificial Life III, pp. 105–129. Addison-Wesley, Reading, MA, 1994.

    Google Scholar 

  7. J. von Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois, 1966.

    Google Scholar 

  8. S. Wolfram. Theory and Applications of Cellular Automata. World Scientific, 1986.

    Google Scholar 

  9. T. Toffoli and N. Margolus. Cellular Automata Machines. MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  10. M. Mitchell. Computation in cellular automata: A selected review. In H. G. Schuster and T. Gramss, eds., Nonstandard Computation. VCH Verlagsgesellschaft, Weinheim, 1996.

    Google Scholar 

  11. M. Sipper. Simple + parallel + local = cellular computing. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, eds., PPSN V, pp. 653–662. Springer, Berlin, 1998.

    Google Scholar 

  12. S. Forrest. Emergent computation: Self-organizing, collective, and cooperative phenomena in natural and artificial computing networks. Physica D, 42:1–11, 1990.

    Article  MathSciNet  Google Scholar 

  13. J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Proc. Natl. Acad. Sci. U.S.A, 92:10742–10746, 1995.

    Article  MATH  Google Scholar 

  14. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75:361–391, 1994.

    Article  MATH  Google Scholar 

  15. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally synchronised cellular automata. In L. J. Eshelman, ed., Proc. 6th ICGA, pp. 336–343. Morgan Kaufmann, San Francisco, CA, 1995.

    Google Scholar 

  16. M. Land and R. Belew. No perfect two-state cellular automata for density classification exists. Phys. Rev. Lett., 74(25):5148–5150, 1995.

    Article  Google Scholar 

  17. M. Sipper. Co-evolving non-uniform cellular automata to perform computations. Physica D, 92:193–208, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Springer, Berlin, 1997.

    Google Scholar 

  19. S. Wright. Stohastic processes in evolution. In J. Gurland, ed., Stohastic Models in Medicine and Biology, pp. 199–241. Univ. of Wisconsin, Madison, WI, 1964.

    Google Scholar 

  20. W. N. Martin, J. Lienig, and J. P. Cohoon. Island (migration) models: Evolutionary algorithms based on punctuated equilibra. In Th. Bäck, D. B. Fogel, and Z. Michalewicz, eds., Handbook of Evol. Comp., chap. C6.3:l. Oxford University Press, New York, NY, 1997.

    Google Scholar 

  21. V. K. Vassilev, J. F. Miller, and T. C. Fogarty. Co-evolving demes of non-uniform cellular automata for synchronisation. In A. Stoica, D. Keymeulen, and J. Lohn, eds., Proc. 1st NASA/DoD Worksh. Evol. Hard.. IEEE Computer Society Press, Piscataway, NJ, 1999. To appear (available via http://www.dcs.napier.ac.uk/~vesselin/papers/eh99-l.ps.gz).

    Google Scholar 

  22. J. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, 1992. 2nd edition.

    Google Scholar 

  23. G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley Interscience, New York, NY, 1977.

    MATH  Google Scholar 

  24. C. G. Langton. Computation at the edge of chaos: Phase transitions and emergent computation. Physica D, 42:12–37, 1990.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vassilev, V.K., Miller, J.F., Fogarty, T.C. (1999). The Evolution of Computation in Co-evolving Demes of Non-uniform Cellular Automata for Global Synchronisation. In: Floreano, D., Nicoud, JD., Mondada, F. (eds) Advances in Artificial Life. ECAL 1999. Lecture Notes in Computer Science(), vol 1674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48304-7_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-48304-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66452-9

  • Online ISBN: 978-3-540-48304-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics