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Abstract

Divergence in antigen response of the immune network is discussed,

based on shape-space modelling. The present model extends the shape-

space model by introducing the evolution of specificity of idiotypes. When

the amount of external antigen increases, stability of the immune network

changes and the network responds to the antigen. It is shown that spe-

cific and non-specific responses emerge as a function of antigen levels.

A specific response is observed with a fixed point attractor, and a non-

specific response is observed with a long-lived chaotic transient state of the

lymphocyte population dynamics. The network topology also changes be-

tween these two states. The relevance of such a long-lived transient state

is discussed with respect to immune function.

1 Introduction

The ‘lock and key’ concept has been central to understanding the specificity
of biochemical molecular interactions, from enzyme-substrate relationships to
antigen-antibody matchings. However, it has gradually been realized that such
a ‘lock and key’ concept is not strictly valid, particularly in immune systems [1].
Antigen-antibody interactions are found to be plastic or ‘ multispecific’ rather
than fixed or single-specific. Namely, antibodies inherently have a flexible recog-
nition capacity. Kearney et al.[2] have confirmed experimentally the existence of
such ambiguity of recognition in the antibody binding site of immature B cells.
It is generally believed that development from ambiguous to specific recognition
is caused by somatic hypermutations [3]. We here propose a new dynamics of
specificity evolutions based on Jerne’s network hypothesis [4]. Our model is
characterized by a meta-dynamics of idiotype specificity on shape-space [5]. We
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show here that specific and non-specific responses to an antigen are governed
dynamically by a fixed point attractor and a chaotic long-lived transient state of
an immune network, respectively. The relevance of such a long-lived transient
state is discussed with respect to immune function.

2 Modeling with a Meta-dynamics of Specificity

We first introduce the standard idiotypic network model. Each idiotype is char-
acterized by a pair of surface sites, called the idiotope and the paratope. If
the idiotope site of a lymph cell is bounded by paratopes of other lymph cells,
the recognized lymph cells become inactivated, whereas the recognizing cells
become activated. Thus the growth dynamics of clone size xn

k,j of an idiotype
of paratope k and idiotope j is given as,

xn+1

k,j = xn
k,j +

∑

p

∑

q

bq,kx
n
p,qx

n
k,j − α

∑

p

∑

q

bj,px
n
k,jx

n
p,q − dxn

k,j + s, (1)

The idiotope-paratope interaction bi,j is assumed to have an exponential

form: 1

σ
e

−|i−j|
σ . We characterize the ambiguity of the antigen-antibody by the

deviation parameter σ. The proposed meta-dynamics controls this parameter.
First, as a simple example, we quantize σ by the power of 2: σm = 2M−m. The
maximum specificity is given by m = M .

Now each idiotype is characterized by three variables: idiotope k, paratope
j, and the specificity m. We thus describe the evolution of specificity as follows:

xn+1

k,j,m = (1− µ′)xn
k,j,m + µ′/2

∑

m′=m−1,m+1

xn
k,j,m′ + sm=1, (2)

where µ′ is the mutation rate of specificity. Here the source term sm=1 is
added for the least specific antibody. This dependency reflects the fact that the
premature B-cells are believed to have lower specificities.

By combining these equations, we establish the complete clone growth dy-
namics with mutations among idiotypes and the evolution of the specificities.

In our model, there are five different types of idiotopes and of paratopes, so
that there are 25 different idiotypes, with M = 5 different levels of specificity.
The rest of the system parameters (i.e. µ′ = 0.3, s = 1.0 , d = 0.1, and α = 2.0)
are selected so that the size of each clone never diverges.

The following results (especially, the natural tolerance at high amount of
antigen) are confirmed not to depend on the values of the mutation rate µ′ and
the source s. The dependency of system size is still unclear.

3 Dynamical Natures of the Network

We pay most attention to how the idiotype network responds to persistent
antigenic stimulations. A static antigen with a binding site k is introduced by
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Figure 1: The average network specificity and the maximum Lyapunov expo-
nents are plotted against the antigen level in Fig. 1(a) and (b) respectively, and
in Fig. 1(c), the stability of the type I attractor is plotted against the antigen
level. Stability is measured by the proportion of idiotypes in the initial distri-
bution that show a transition from a type I to a type II state before a given
time step. The time intervals used are 10,000, 50,000, and 100,000 steps. The
number of initial distribution sets is 100.

adding the constant term +Akbk,jxi,j,m to the above equation. Estimating the
mean network specificity Spk by averaging the specificity of all idiotypes bearing
paratope type k, we study the antigenic effect on the network dynamics.

An antigen of type 4 is used as an example, but the following result does not
depend on the selected antigen type. Because we adopt the periodic boundary
condition for the shape-space, each idiotype is equivalent within a network.

We show a plot of the averaged specificity ( ¯Sp4) and the maximum Lyapunov
exponent under the antigen stimulations over 104 steps (see Fig. 1(a), (b)).

In Fig.1(a), as expected, the network specificity increases when we increase
the amount of antigen. At about 9.5 units of antigen, however, the specificity
abruptly diverges to a high value. We say that a specific response has occurred
at this antigen level. This specific response is observed until the antigen level
reaches 13.5 units. Beyond this critical value, the specific response is no longer
observed. Inversely, the specificity is sustained at the lower values. This lower
sustained response can be compared to natural tolerance to the antigen.

On the other hand, by comparing Fig.1(a) with (b), when the amount of the
antigen is set between 9.5 and 13.5 units, we notice that the lower specificity
emerges with chaotic dynamics, and the higher specificity emerges with a fixed
point dynamics. We shall call the former dynamics a type I attractor and the
latter a type II attractor.

However, the type I attractor is not a true attractor. It was found to be
a long-lived transient state referred to as a super-transient state, which is a
common phenomenon in high-dimensional dynamical systems [6]. In Fig.1(c),



0

4

4

1

4

2

4

3

4

2

2

1

1

0

4

4

1

4

2

4

3

4

1

1

0

1

3

1

2

1

1

0

1

2

0

2

3

2

2

2

2

3

(a) (b)

Figure 2: Topology of an idiotype network of type II and I attractors is shown
in Fig.2 (a) and (b), respectively, for an antigen level of 12 units. Only idiotypes
that have a population of 1.25 on average of over 10,000 time steps are depicted.
Each idiotype in this figure is represented by a pair of symbols, square and circle.
The square with the numeral inside denotes the paratope, whereas the circle
with the numeral inside denotes the idiotope. The triangle with the number
inside represents the injected antigen type. A stimulation wave from idiotope
to paratope is shown by a dotted line.

when the observation period is extended, we observe a transition from type I to
type II attractor. There is no inverse-transition from the type II to the type I
attractor. The super-transient states are highly dependent on the antigen level.
For example, when the antigen level is 11.5 units in Fig.1(c), the transition
probability from type I to type II is still less than 12 percent. In such cases, it
behaves as an attractor in a practical sense.

From a practical viewpoint, response time is also worth noticing. If we say
that the relevant time scale for the immune response should be less than 10,000
time steps, in a practical sense there is no specific response even at higher levels
of antigen (see Fig.1(c)). Our results suggest that a certain level of antigen
causes the super-transient state to suppress fast immune responses under the
idiotype network.

Besides the response time, much attention has been paid in the field of
theoretical immunology to topological changes of the network [7, 8, 9]. Here
we argue that the transition from type I (unspecific) to type II (specific) causes
a simultaneous change of network topology. The network topology of each of
these two states is shown in Fig.2.

As we see from the figure, a chaotic super-transient state of type I has a
more complex network than does type II. Inversely, higher specificity to the
dosed antigen is maintained by a simpler network structure. The maintenance
of idiotypic diversity can be attributed to chaotic dynamics.

By estimating the amount of specificity of all idiotypes in the type I’s dis-



tributed state and the type II’s localized state respectively, it is found that
each idiotype in type I’s distributed state has a low specificity on the whole.
Namely, each idiotype interacts weakly with many idiotypes in order to have
high connectivity. As a result, the stimulation of the network by dosed antigen
is distributed over the network, not concentrated only on idiotypes bearing a
binding site (paratope with type 4) for the antigen. Thus, the immune response
to the antigen has a tendency to be suppressed. This result would support Stew-
art’s extrapolation that ‘The higher connectivity among idiotypes, the greater
the degree of tolerance’ [10].

Recently, a chaotic oscillation was found experimentally in a natural tolerant
state. Subsequently, theoretical immunologists have tried to establish ‘natural
tolerance under chaotic dynamics’ against a static antigen [7, 8], though their
simulation results show difficulty establishing such a tolerance without assuming
a special network topology of an ‘odd-loop structure’ and so-called ‘bell-shaped
function’ as an activation function. We have shown how such a tolerance can
arise naturally under a chaotic dynamics, without these assumptions, by adding
an additional flexibility; i.e., meta-mutation dynamics with specificity of idio-
type. We have used a simple idiotypic network model, and have not ventured to
use the more complex ’ bell-shaped function model’ because of focusing on ca-
pabilities of the meta-dynamics we introduced. Applying the meta-dynamics we
introduced here with the bell-shaped function model is left as a future problem.

4 Concluding Remarks

In this paper, we have expanded the possibilities of theoretical immunology by
introducing new meta-dynamics. We believe that the immune response should
be seen as having a more dynamic nature than allowed by most current mod-
els [11], and that the specific antigen-response and the dynamical percolation
related to natural tolerance are caused by the meta-dynamics controlling the
degree of specificity, as introduced here.
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