
Static Parallelization of Functional Programs:

Elimination of Higher-Order Functions &
Optimized Inlining

Christoph A. Herrmann, Jan Laitenberger, Christian Lengauer, and
Christian Schaller

Fakultät für Mathematik und Informatik,
Universität Passau, Germany

{herrmann,lengauer}@fmi.uni-passau.de
http://www.fmi.uni-passau.de/∼lengauer

Abstract. Functional programs have long been recognized as attractive
subjects of an implicit static parallelization because functional program-
ming excludes artificial dependences, which would restrict parallelism.
One central concept which makes functional programming a powerful
paradigm is the higher-order function, which can have functions appear-
ing in its arguments or result. We present an automatic method of elim-
inating higher-order functions, which is based on earlier work by Bell,
Bellegarde and Hook [2]. The number of auxiliary functions added in the
process is subsequently minimized by inlining transformations.

Keywords: functional programming, Haskell, higher-order function, in-
lining, parallelization, skeletons.

1 Introduction

We report on first experiences with a new compiler for a functional language,
called HDC, which supports the use of skeletons, i.e., higher-order functions
which have customized parallel implementations, collected in a skeleton library.
The overall idea is to equip HDC with implicit, high-quality parallelism through
these skeleton implementations.

The compiler consists of quite a number of phases; we concentrate on two
here. One performs higher-order elimination (HOE), the other inlining. More
complete information on the compiler is available elsewhere [6].

The following section sketches the different phases of our parallelizing com-
piler. Section 3 describes the HOE algorithm proposed in the literature and our
modifications to it. Section 4 comments on the quality of the generated first-order
program. Section 5 concludes.

2 The HDC Compiler

The HDC compiler [6, 9] translates a subset of Haskell [3] into an imperative lan-
guage – at present, C with MPI calls. The main difference to Haskell is that HDC

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 930–934, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Static Parallelization of Functional Programs 931

is strict, in order to facilitate a compile-time parallelization. (However, invisibly
to the programmer, strictness is partly eliminated by inlining transformations.)

The compiler is based on the principle of compilation by transformation,
which has already been used successfully in the Glasgow Haskell compiler GHC
[10], and consists of the following phases [6]:

1. scanning/parsing, using the tool happy
2. desugaring
3. list comprehension simplification
4. lambda lifting, let elimination [8]
5. simplification of list comprehensions
6. type checking
7. monomorphization
8. elimination of functional arguments (HOE)
9. elimination of mutual recursion (optional)

10. case elimination
11. generation of intermediate DAG code
12. tuple elimination
13. optimization cycle (optional)

– inline expansion
– rule-based DAG optimizations
– size inference [5]

14. abstract code generation
15. automatic parallelization (optional)
16. code generation

3 Higher-Order Elimination (HOE)

The program subject to HOE must be well-typed according to the Hindley-
Milner rules. It must also be closed, i.e., all functions cited must be available to
the HOE procedure for a global analysis and transformation. The result of the
HOE is an equivalent first-order functional program, which is also well-typed.

We are applying HOE in HDC because we want to avoid having to deal with
higher-orderness in our target C code.

We base our work on a previous HOE algorithm for a more general setting
[2]. We were able to simplify this algorithm significantly for our purposes. Most
importantly, in order to simplify the generation of the target C code, our input
to the HOE algorithm is monomorphic. The large amount of functions, which
are introduced in the HOE and in the prerequisite phase of desugaring, is sub-
sequently reduced substantially by the inlining transformations.

There is also a source translation from ML to Ada [13], which is based on
the same general algorithm.

The general HOE algorithm uses a set of seven rewrite rules for the trans-
formation. The idea is to replace the partial applications of a function by a kind
of closure. A closure contains a function identifier and the values of the free
variables in the partial application.



932 Christoph A. Herrmann et al.

Some of the seven rules deal with restricting polymorphism and become ob-
solete in our monomorphic setting. Our modified HOE algorithm [11] uses the
following set of four rules:

1. η-expansion. This rule expands function definitions which return functions
as result with as many additional formal arguments as the function returned
expects. If the result was polymorphic before monomorphization, the num-
ber of additional arguments may depend on the call. Applications of the
expanded function then include the application of the function returned and
deliver a non-function result.

2. Encode. This rule encodes functional arguments using constructors and
introduces apply functions which decode them.

3. ApplVar. If in a function application the function is represented by a vari-
able which is marked to carry a closure value, a temporary type inconsistency
occurs during the transformation because a closure cannot be applied. This
rule wraps the closure in a call to an additional apply function which takes
the closure as an argument.

4. RemoveHOTypes. To clean things up, all function types appearing in data
type definitions are replaced by an algebraic data type, which is parametrized
with an identifier of the encoded type and encompasses all closures.

The algorithm starts with a phase of applications of rule 1, followed by a phase
in which rules 2 and 3 are applied repeatedly in any order, and terminates with
a phase of applications of rule 4.

4 Experimental Results

Of paramount interest is the impact of the HOE algorithm on the target code.
Our first example, Karatsuba, is an optimized multiplication of two polynomials,
represented by a list of their coefficients [1, 4]. Our second example is the frequent
set problem [12], a data mining application.

In Tab. 1, we have recorded some static characteristics of the code (row by
row, as the compilation proceeds) and the effect of our optimizations.

The Karatsuba example is expressed with a skeleton whose parallelism is
completely static, except for some parameters, e.g., the problem size. Thus, the
compiler optimizations can only affect the local structure inside the customiz-
ing functions. The frequent set example is much more dynamic: optimizations
can affect the structure of the entire implementation. Therefore, it pays to an-
alyze the properties of the program after different phases of the compilation.
We have built an HDC interpreter for this purpose. Tab. 2 shows the results of
an interpretation of the abstract code with two different samples A and B. The
improvements after optimization demonstrate the important role inlining plays
after the HOE.

The large amount of work is due partly to the nature of the problem and
partly to the lack of sophistication of our source program, derived from Alg. 3.7 of
[12] (there are cleverer ways [7]). Regardless of that, note that the optimizations



Static Parallelization of Functional Programs 933

number of Karatsuba frequent set

1. source functions 7 21

2. source lines 30 86

3. functions before HOE 75 104

4. functions after HOE 37 103

5. tree nodes 416 968

number of no opt. opt. no opt. opt.

6. DAG functions 31 11 86 25

7. total DAG nodes 202 269 492 455

8. total abscode nodes 212 343 534 563

Table 1. Effect of compilation and optimizations on the program

reduce the number of operations by up to 30% and that there is a high potential
of parallelism.

input no. of operations no. of par. steps average par.

sample threshold no opt. opt. ratio no opt. opt. ratio no opt. opt. ratio

A 0.5 12075 8782 0.73 355 224 0.63 34.0 39.2 1.15

B 0.5 55935 39559 0.71 893 586 0.66 62.6 67.5 1.08

B 0.2 360963 252887 0.70 1854 1239 0.67 194.7 204.1 1.05

Table 2. Run-time characteristics of the frequent set example

We do not yet have data on the speedup through parallelism. But, compared
to GHC-compiled code, the HDC Karatsuba example takes sequentially 20%
longer, the frequent set problem roughly 2 to 2.5 times as long [6]. This is the
price we pay for not having to deal with higher-orderness in the target code.

5 Conclusions

We purport that the elimination of higher-order functions is especially useful
for a parallelization via the use of skeletons. We have succeeded in applying
our compilation techniques without difficulty to two realistic, application-level
functional programs.

The higher-orderness of skeletons permits the combination of static and dy-
namic techniques in program parallelization. E.g., the frequent set example re-
quires many skeletons – some static, some dynamic.



934 Christoph A. Herrmann et al.

Acknowledgements

This work has been funded by the DFG under project RecuR2 and by the DAAD
under an exchange project in the ARC programme. Our former team member
Robert Günz deserves special thanks for implementing the first two compiler
phases. We are also grateful to Françoise Bellegarde, Christophe Darlot and
John O’Donnell for fruitful discussions.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Series in Computer Science and Information Processing.
Addison-Wesley, 1974.

[2] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunction-
alization. ACM SIGPLAN Notices, 32(8):25–37, 1997. Proc. ACM SIGPLAN Int.
Conf. on Functional Programming (ICFP’97).

[3] Richard Bird. Introduction to Functional Programming using Haskell. Series in
Computer Science. Prentice Hall Europe, 2nd edition, 1998.

[4] Christoph A. Herrmann and Christian Lengauer. On the space-time mapping of a
class of divide-and-conquer recursions. Parallel Processing Letters, 6(4):525–537,
1996.

[5] Christoph A. Herrmann and Christian Lengauer. Size inference of nested lists
in functional programs. In Kevin Hammond, Tony Davie, and Chris Clack, ed-
itors, Proc. 10th Int. Workshop on the Implementation of Functional Languages
(IFL’98), pages 346–364. Department of Computer Science, University College
London, 1998.

[6] Christoph A. Herrmann, Christian Lengauer, Robert Günz, Jan Laitenberger, and
Christian Schaller. A compiler for HDC. Technical Report MIP-9907, Fakultät
für Mathematik und Informatik, Universität Passau, May 1999.

[7] Zhenjiang Hu. Personal communication at the Dagstuhl Seminar on High-Level
Parallel Programming, April 1999.

[8] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Jean-Pierre Jouannaud, editor, Proc. Conf. on Functional Programming
Languages and Computer Architecture (FPCA’85), LNCS 201. Springer-Verlag,
1985.

[9] Lehrstuhl für Programmierung, Universität Passau. The HDC compiler project.
http://www.fmi.uni-passau.de/cl/hdc/.

[10] Simon L. Peyton Jones. Compiling Haskell by program transformation: A report
from the trenches. In Hanne Riis Nielson, editor, Programming Languages and
Systems (ESOP’96), LNCS 1058, pages 18–44. Springer-Verlag, 1996.

[11] Christian Schaller. Elimination von Funktionen höherer Ordnung in Haskell-
Programmen. Diplomarbeit, Fakultät für Mathematik und Informatik, Univer-
sität Passau, September 1998. In German.

[12] Hannu Toivonen. Discovery of Frequent Patterns in Large Data Collections. PhD
thesis, Department of Computer Science, University of Helsinki, 1996.

[13] Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. J. Functional Programming, 8(4):367–412,
July 1998.


	Introduction
	The unhbox voidb @x hbox {${cal HDC}$} Compiler
	Higher-Order Elimination (HOE)
	Experimental Results
	Conclusions

