
Experience with a Recursive Perturbation Based

Algorithm for Symmetric Indefinite Linear
Systems?

Anshul Gupta1, Fred Gustavson1, Alexander Karaivanov2, Jerzy Wasniewski2,
and Plamen Yalamov3

1 IBM Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598, USA,
fax: + 1 914 945 3434, anshul@watson.ibm.com, gustav@watson.ibm.com

2 UNI•C, Building 304 - DTU, DK-2800 Lyngby, Denmark,
fax: + 45 3587 8990, alex@uni-c.dk, unijw@uni-c.dk

3 University of Rousse, 7017 Rousse, Bulgaria,
fax: + 35 982 455 145, yalamov@ami.ru.acad.bg

Abstract. We consider recursive algorithms for symmetric indefinite
linear systems. First, the difficulties with the recursive formulation of
the LAPACK SYSV algorithm (which implements the Bunch-Kaufman
pivoting strategy) are discussed. Next a recursive perturbation based
algorithm is proposed and tested. Our experiments show that the new
algorithm can be about two times faster although performing about the
same number of flops as the LAPACK algorithm.

1 Introduction

Recursive algorithms for dense linear algebra problems are proposed and studied
in [1, 2, 7]. It is shown that recursion leads to better performance on modern
processors. Also, the codes using recursion are very simple, and easy to write in
languages that support recursion (e. g. Fortran90).

In [1, 2, 5, 7] recursion is applied to three widely used algorithms, the LU and
QR decompositions for general dense matrices, and the Cholesky decomposition
for symmetric and positive definite matrices. In the present work we discuss the
recursive approach to the decomposition of symmetric but indefinite matrices.
It is well-known that such matrices require pivoting as the decomposition algo-
rithms can be unstable, or can break down, even for well-conditioned matrices.
Therefore, in LAPACK [3], the method Bunch-Kaufman pivoting is applied. As
we will see in the next section the same type of pivoting is possible to apply in
the recursive algorithm but doing so makes the algorithm more complicated and
time consuming.

In practice there are different approaches to avoid the break down of accuracy
in practice. In this paper we propose and test a perturbation approach; i. e., we
? This research is supported by the UNI•C collaboration with the IBM T.J. Watson

Research Center at Yorktown Heights. The last author was partially supported by
the Grant I-702/97 from the Bulgarian Ministry of Education and Science.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 1096–1103, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Recursive Perturbation Based Algorithm 1097

perturb pivot elements whenever they are small. In this way we move them away
from zero, and improve the stability to some extent. Because of the perturbation
the obtained decomposition is only accurate to a few digits. Nevertheless, it
can be used for the solution of linear systems by adding 1-2 steps of iterative
refinement. The cost of iterative refinement is tiny because it only uses triangular
solves. Previously, the same approach has been applied to other types of matrices
in [4] and [8], for example.

When the matrix of the problem is kept in full storage (like in SYSV of
LAPACK) our algorithm does not need additional memory. At the same time
it can be up to three times faster than the corresponding LAPACK subroutine
SYSV.

The outline of the paper is as follows. In Section 2 we explain the diffi-
culties with the recursive algorithm that uses Bunch-Kaufman pivoting. Then
in Section 3 the algorithm with the perturbation approach is given. Numerical
experience is presented and discussed in Section 4.

2 Recursive Factorization with Pivoting

It is well-known that the Cholesky factorization can fail for symmetric indefinite
matrices. In this case some pivoting strategy can be applied (e. g. the Bunch-
Kaufman pivoting [6, §4.4]). The algorithm can be given as follows.

LDLT factorization
L = I (identity matrix); k = 1;
while (k < n)

Apply pivoting: choose a 1 × 1(s = 0), or 2 × 2(s = 1) pivot block,
and exchange the corresponding rows and columns;
E = Ak:k+s,k:k+s

C = Ak+s+1:n,k:k+s

B = Ak+s+1:n,k+s+1:n

Lk+s+1:n,k:k+s = CE−1

Dk:k+s,k:k+s = E
Ak+s+1:n,k+s+1:n = B − CE−1CT

k = k+s+1
end

As a result we get
PAPT = LDLT ,

where L is unit lower triangular, D is block diagonal with 1× 1, or 2× 2 blocks,
and P is a permutation matrix.

Now let us look at the recursive formulation of this algorithm. This is given
below. The recursion is done on the second dimension of matrix A; i. e., the
algorithm works on full columns as in LU factorization.

1098 Anshul Gupta et al.

Recursive Symmetric Indefinite Factorization (RSIF) of A1:m,1:n

k = 1
if (n = 1)

Define the pivot: 1×1, or 2×2.
Apply interchanges if necessary
k = k + 1, or k = k + 2
If the pivot is 2×2: FLAG=1

else
n1 = n/2
n2 = n − n1
RSIF of A:,k:k+n1−1

if (FLAG = 1)
n1 = n1 + 1
n2 = n − n1

end
update A:,k:k+n2−1

RSIF of A:,k:k+n1−1

end

Since matrix A is square, we must set m = n when we first call RSIF. The ad-
vantage of the recursive formulation is that the updating step is a matrix-matrix
operation, and BLAS Level 3 subroutine can be used. Thus if the algorithm is
properly implemented some speedup can be expected from this formulation. But
this does not occur.

The fact that the recursive algorithm does not fully update the lower right
part of A forces us to incorporate updating and downdating of the exchanged
by the pivoting strategy columns. Such a step may bring more computation
depending on the position of the columns. Additionally, the computation must
be done as a Level 2 computation as we are updating and downdating single
columns. To summarize: the application of the Bunch-Kaufman pivoting strategy
forces one to do Level 2 computations (in some cases undoing a previously done
computation at a Level 3 rate).

3 Perturbation Approach

An alternative to pivoting is our perturbation approach. It is applied in cases
when there can be a large growth of elements (or breakdown), and pivoting is not
desirable for some reason. The reason for avoiding the Bunch-Kaufman pivoting
is that the performance suffers; this was illustrated in Section 2. This approach
is applied in [4] to a parallel algorithm (where pivoting is not desirable because
it adds more communication between the processors), and in [8] to an algorithm
for inversion of Toeplitz matrices (where pivoting spoils the Toeplitz structure,
and slows down the algorithm).

The idea of the perturbation approach is simple. Usually, growth of elements
(or breakdown) happens when we pivot with a small number (or zero). Therefore,
we add a small number δ to each pivot a,

Recursive Perturbation Based Algorithm 1099

a = a + Sgn(a)δ, Sgn(a) =
{

sign(a), a 6= 0,
1, a = 0,

in case |a| is small, more precisely, |a| < δ.
With this approach the factorization for symmetric indefinite matrices looks

as follows:

Perturbed Recursive Symmetric Indefinite Factorization (PRSIF)
of A(1 : n, 1 : n)
if (n = 1)

if (|A1,1| < δ)
A1,1 = A1,1 + Sgn(A1,1)δ

end
D1,1 = A1,1

else
p = n/2
PRSIF of A1:p,1:p = L1D1L

T
1

solve XD1L
T
1 = Ap+1:n,1:p for X

update Ap+1:n,p+1:n = Ap+1:n,p+1:n − XD1X
T

PRSIF of Ap+1:n,p+1:n = L2D2L
T
2

end

Let us note that the algorithm can be easily modified so that the case n = 1 is
changed to n ≤ n0. In such a case we do not go to the deepest level of recursion,
and decompose the block of size ≤ n0 with some appropriate algorithm. The
numerical experiments at the end of the paper are done in this way (with n0 = 64
which is the best choice for our architecture).

As a result of this algorithm we get Ã = L̃D̃L̃T , where D̃ is diagonal, L̃ is
unit lower triangular, and we put a tilde because of the perturbations.

Because of adding perturbations it is possible that we might change the
input matrix A dramatically. So, the question is, how much does LDLT change
when we add perturbations. To answer this question we consider the product
LDLT = A. For any diagonal entry we have

Ai,i = Di,i +
i−1∑
j=1

L2
i,j . (1)

If a perturbation is necessary then we add ±δ to Di,i, and we have

Ãi,i = Di,i ± δ +
i−1∑
j=1

L2
i,j . (2)

By comparing (1) and (2) we see that

Ãi,i = Ai,i ± δ.

For the whole algorithm we operate not on the original matrix A but on Ã,
where

Ã = A + ∆A, |∆A| ≤ δI, (3)

1100 Anshul Gupta et al.

i. e. ∆A is diagonal. In the example problems we chose 1-2 perturbations seemed
to be enough, so, only 1-2 entries of ∆A were nonzero and equal to ±δ. Thus if δ
is small the changes in A are small, too. If A is well-conditioned this will lead to
small changes in A−1 because we are only doing 1–2 small rank corrections. So,
the perturbation approach is expected to work well for well-conditioned matrices.

Because of the changes in A the LDLT factorization is no longer accurate
but we can use this factorization for solution of linear systems AX = B. The
idea is to apply iterative refinement [6, §3.5.3]:

solve ÃX(0) = B;
for k = 1, 2, . . . until convergence do

R(k−1) = B − AX(k−1);
solve (A + ∆A)τ (k) = R(k−1);
X(k) = X(k−1) + τ (k);

end

The perturbed factorization is used when solving the linear systems above.
Thus the iterative refinement needs O(n2) additional operations, and does not
essentially increase the total operations count.

For the iterative refinement we need to keep the original matrix A. However,
we do not need additional memory (except for one vector of size n where we
store the diagonal of A) for this because we assume that matrix A is kept in
full storage, and the original matrix A stays untouched by the algorithm in the
upper triangle of the array. Thus, the algorithm essentially does not require more
memory.

At present the perturbation δ is difficult to estimate theoretically. From our
practical experience we suggest that the best value for δ is δ =

√
ρ0, where

ρ0 is the machine roundoff unit. In a Cholesky factorization A = LLT and
Lii = √

. . .. This analogy suggests why
√

ρ0 works. With this value of δ 1-2
iterative refinement steps usually produce satisfactory results. In case δ is not
chosen properly, we will have a large residual R. Since we compute the residual
explicitly, we can notice such a situation, and produce a warning message.

4 Numerical Experiments

The experiments are produced on an IBM SMP node which has four CPUs (we
use all of them in the experiments). The codes are written in Fortran90. We use
double precision (roundoff unit ≈ 2.22E-16). Thus, our choice is δ = 1E-8. We
compare our PRSIF algorithm with iterative refinement (denoted by RPSYSV)
to the LAPACK SYSV algorithm. In order to see the advantage of the recursive
algorithm we coded also a version of the SYSV algorithm in which the pivoting
part was replaced by a perturbation part in the same way as for RPSYSV. This
algorithm is denoted by PSYSV. This means that in PSYSV we also use iterative
refinement. The number of iterative refinement steps in RPSYSV and PSYSV
was fixed to be 1. Since IR doubles the number of digits and the precision we
work with is approximately δ = 1e − 8 the accuracy we obtain in our examples

Recursive Perturbation Based Algorithm 1101

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

Ser
ies

1: T
ime

, s

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n

Ser
ies

2: T
ime

, s

Fig. 1. Timing results: SYSV(-), PSYSV(- -), RPSYSV(· · ·)

0 200 400 600 800 1000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

n

S
pe

ed
up

: S
er

ie
s

1

0 200 400 600 800 1000
1

1.5

2

2.5

n

S
pe

ed
up

: S
er

ie
s

2

Fig. 2. Speedup results: SYSV/RPSYSV(-), PSYSV/RPSYSV(- -),
SYSV/PSYSV(· · ·)

0 200 400 600 800 1000
10

−14

10
−13

10
−12

10
−11

n

Ser
ies

1: E
rror

0 200 400 600 800 1000
10

−15

10
−14

10
−13

n

Ser
ies

2: E
rror

Fig. 3. Error results: SYSV(-), PSYSV(- -), RPSYSV(· · ·)

1102 Anshul Gupta et al.

is close to 1e−16. We present results for the time, the speedup, and the forward
relative error ‖x̃ − x‖∞/‖x‖∞ of the solution x for the three algorithms.

In the first series of experiments (denoted by Series 1) a random matrix is
generated by the LAPACK subroutine DLAGGE.

In the second series of experiments (denoted by Series 2) matrix A is of the
following type1):

A =
(

∆ C
CT I

)
,

where ∆ is diagonal with small entries, C has random elements with large entries,
and I is the identity. The entries of ∆ are chosen to be less than δ. In this way
the PRSIF algorithm is forced to make perturbations.

The results are presented in Fig. 1–3 for different sizes of matrix A.
The experiments show that 1) the recursive algorithm (in the best compari-

son) is about two times faster on average although performing almost the same
number of flops as the LAPACK subroutine, and 2) the error in the recursive
algorithm is similar to the error produced by the LAPACK subroutine.

As we mentioned the recursion is stopped when n0 = 64. We tested also
other choices of n0. The performance degrades when decreasing or increasing
n0. The change is slight when we choose values of n0 close to 64 (e. g. 56,60,68,
or 72). When n0 is significantly different (e. g. 8, or 200) the performance can
be much worse. The corresponding blocking factor for LAPACK is chosen to be
32. This is the best choice (with highest performance) for most matrix sizes on
our architecture.

Let us note that essentially we have two types of block operations in Algo-
rithm PRSIF: 1) triangular solves with L1, and 2) updating Ap+1:n,p+1:n. For
the first operation we use the ESSL BLAS-3 subroutine which is compiled for
the four CPUs. The second block operation is implemented by ourselves because
there is no appropriate BLAS operation for symmetric matrices (this operation
is included in the next version of BLAS). In the LAPACK subroutine the ESSL
BLAS-3 routines are used wherever possible. The difference between the recur-
sive and LAPACK algorithm is that the recursive algorithm works on larger and
larger blocks while the LAPACK algorithm works on blocks with a fixed size.
As a result the advantage of BLAS operations is better utilized by the recursive
algorithm.

The performance of PSYSV is better than SYSV because perturbation is used
instead if row and column exchanges in the Bunch-Kaufman pivoting which are
slower. But the experiments show that RPSYSV has a significantly better per-
formance than SYSV and PSYSV. The influence of recursion on the performance
is especially illustrated by the difference between PSYSV and RPSYSV where
the only difference is the recursion.

The timing behavior of RPSYSV is quite promising. At present we do not
have theory about the application of the perturbation idea, and so we need to
do more research to justify when its application will give accurate results.

1 Suggested to us by John Reid.

Recursive Perturbation Based Algorithm 1103

References

[1] Andersen, B., Gustavson, F., Waśniewski, J.: A recursive formulation of the
Cholesky factorization operating on a matrix in packed storage form, in. Parallel
Processing for Scientific Computing, Proceedings of the Ninth SIAM Conference
on Parallel Processing for Scientific Computing, San Antonio, TX , USA, March
24-27, 1999

[2] Andersen, B., Gustavson, F., Waśniewski, J., Yalamov, P.: Recursive formula-
tion of some dense linear algebra algorithms, in. Parallel Processing for Scientific
Computing, Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, San Antonio, TX , USA, March 24-27, 1999

[3] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK
Users’ Guide Release 2.0. SIAM, Philadelphia, 1995

[4] Balle, S., Hansen, P.: A Strassen-type matrix inversion algorithm for the Connec-
tion Machine. Report UNIC-93-11, October 1993

[5] Elmroth, E., Gustavson, F.: New serial and parallel recursive QR factorization
algorithms for SMP systems. In: Applied Parallel Computing, (Eds. B. K̊agstrm̈
et. al.), Lecture Notes in Computers Science, v. 1541, Springer, 1998.

[6] Golub, G., Van Loan, C.: Matrix Computations, 3rd edition. John Hopkins Uni-
versity Press, Baltimore, 1996

[7] Gustavson, F.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM J. Res. Develop. 41(1997), pp. 737–755

[8] Hansen, P., Yalamov, P.: Stabilization by perturbation of a 4n2 Toeplitz solver.
Preprint N25, Technical University of Russe, January 1995

	Introduction
	Recursive Factorization with Pivoting
	Perturbation Approach
	Numerical Experiments

