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Abstract. High Performance Fortran (HPF) is a data-parallel language
providing the user with a high-level interface for programming scientific
applications, while delegating to the compiler the task of producing ex-
plicitly parallel code. In this paper, we give an overview of the motivation
and the results of the ESPRIT project “HPF+”. The project succeeded
in demonstrating that HPF, with a small set of language extensions and
an appropriate compiler and tool infrastructure, has the potential to be
efficient for advanced industrial applications, sometimes approaching the
performance of manually written message-passing code. We introduce
the applications which were used to guide and evaluate the development
work in the project, provide an overview of the HPF+ language and
discuss the Vienna Fortran Compiler (VFC) as well as the performance
obtained for the project benchmarks.

1 Introduction

The emergence of scalable parallel architectures brought two issues into focus:
the necessity of controlling locality and the complexity of parallel programming.
One way to control locality is to use an explicitly parallel approach, e.g., C or
Fortran coupled with message passing. However, the resulting programs tend to
be complex and rather low-level. It became clear that a higher level approach
was also possible. High Performance Fortran (HPF) is such an approach, pro-
viding a high-level data-parallel programming paradigm with a single thread of
control in a global address space, explicitly parallel constructs, and user-specified
distribution and alignment directives for the control of locality.

However, the original definition of the language, HPF-1 [14], supported only
applications with regular data distributions and access patterns efficiently. The
motivation for the ESPRIT project “HPF+” came from the realization that (1)
HPF would only be accepted by the user community if it proved to be able to
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adequately handle advanced industrial codes as well, and (2) that early languages
such as Vienna Fortran [8, 21] had already shown the feasibility of this goal by
providing a proof of concept.

The HPF+ project was conducted in the timeframe January 1996 through
April 1998, and involved the following partners: AVL List Gmbh (Austria),
ECMWF (UK), ESI SA (France), NA Software Ltd. (UK), NEC Europe Ltd.
(Germany), University of Pavia (Italy), and University of Vienna (Austria). The
major results of the HPF+ project include

– the definition of a set of benchmark kernels representing typical features of
advanced industrial applications;

– the definition of an extension of the HPF-1 language, HPF+, guided by the
requirements of the benchmark kernels;

– the implementation of HPF+ in the Vienna Fortran Compiler (VFC), sup-
ported by a range of software tools, in particular for performance analysis.

The HPF+ project was carried out in parallel to the development of the recent
HPF standard, HPF-2 [15], which resulted in a convergence for some features.
However, HPF+ went beyond HPF-2 by providing specialized control features,
in particular for the manipulation of communication schedules, and also, on the
other hand, simplified the language by eliminating some features with little ap-
plicability but troublesome semantics and implementation problems.

The paper is structured as follows. In the next section, we give an overview
of the application benchmarks developed for the project. This is followed in
Section 3 by a short overview of the HPF+ language. Section 4 provides a brief
description of VFC, including a discussion of the performance results obtained
for the benchmark kernels. The paper concludes with an outlook to potential
future developments of HPF (Section 5).

2 The HPF+ Application Kernels

This section provides a short description of the application codes targeted within
the HPF+ project. From these applications representative kernels were extracted
to address the key challenges for the language and compiler development.

2.1 PAM-CRASH

PAM-CRASH [11], from ESI (France), is an explicit time-marching Finite El-
ement program used for the numerical simulation of the highly non-linear, dy-
namic phenomena arising in short-duration contact-impact problems. It uses a
central difference explicit time-marching scheme with unstructured meshes com-
prised of mechanical elements. The major part of the computational cost of the
algorithm comes from the calculation of the internal forces at the nodal points.
These force calculations can be broken down into two parts: stress-strain calcu-
lations and contact-impact calculations. Both parts display very different levels
of data locality, when considering parallel implementations.
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The stress-strain calculations are performed over the elements. The calcula-
tion on each element requires as input the latest co-ordinates and velocities from
only those nodal points defining the element. Once calculated, the force on the
element is distributed as individual forces at the nodal points. These calculations
produce the largest contribution to the overall computational cost (between 60%
and 80%, depending on the particular model). In contrast to the stress-strain
calculations, the contact-impact algorithms used within the code have, in terms
of data access, a pseudo-global nature. Two sets of HPF+ crash kernels have
been developed. All kernels resemble the explicit time-marching scheme but the
first set of kernels is restricted to stress-strain calculations only, whereas the
second set includes also contact-impact algorithms.

2.2 FIRE

FIRE [1] from AVL (Austria) is a fully interactive general purpose computational
fluid dynamics program. It was developed specially for computing compressible
and incompressible turbulent fluid flows as encountered in engineering environ-
ments. Two- or three-dimensional unsteady or steady simulations of flow and
heat transfer within arbitrary complex geometries with moving or fixed bound-
aries can be performed. For the discretization of the computational domain a
finite volume approach is applied. The resulting system of strongly coupled non-
linear equations has to be solved iteratively by an outer non-linear cycle and
an inner linear cycle. The matrices in the linear cycle are extremely sparse and
have a large and greatly varying bandwidth. In order to save memory, only non-
zero matrix elements are stored in linear arrays and are accessed by indirect
addressing.

The HPF+ FIRE kernel contains the complete time marching solution of a
passive scalar transport equation, representing key requirements of the entire
FIRE application.

2.3 IFS

The Integrated Forecasting System [2] (IFS) of the European Centre for Medium
Range Weather Forecasts uses a spectral forecast model for the prediction of
weather for a period of up to 10 days ahead. This model is highly parallel and
has been implemented on both distributed and shared memory systems. Given
a strong desire to protect the scientific code from details of the parallel imple-
mentation, a transposition strategy is used. With this approach, the complete
data required is redistributed at various stages of a time step so that the arith-
metic computations between two consecutive transpositions can be performed
without any interprocess communication. Such an approach is feasible because
data dependencies in the forecast model exist only in one coordinate direction,
this direction being different for each algorithmic component. An overwhelming
practical advantage of this technique is that the interprocessor communication
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is localized in a few routines. The transpositions are executed prior to the appro-
priate algorithmic stage, so that the computational routines (which constitute
the vast bulk of the IFS source code) need have no knowledge of this activity.

In terms of HPF, the transpositions are no more than redistributions that
would permit more efficient data distributions to be used during an algorithmic
stage. It is the representation of the data spaces used in the IFS that present a
technical difficulty for HPF as they are all irregular. Grid point space, Fourier
space and spectral space cannot be represented by simple BLOCK or CYCLIC distri-
butions without the severe overhead of additional interprocessor communication
during the algorithmic stages.

Three HPF+ kernels representing the key challenges of the IFS application
have been developed. The LG kernel to address the IFS program issues of grid-
point space, the SL kernel to represent the semi-Lagrangian (SL) calculations,
and the TS kernel to represent the Fourier and Legendre transforms to transform
data between grid-point space and spectral space.

2.4 HPF Language Requirements

All applications outlined above can be classified as highly irregular. They are
based on unstructured grids and extensively use loops with indirect array ac-
cesses. For an efficient implementation of these codes in HPF it is essential to
distribute data at runtime in an irregular manner reflecting the structure of
the underlying grids and to dynamically balance the computational load of the
processors.

For all applications considered in the HPF+ project, the requirement for gen-
eralized block distributions with run-time defined block-sizes is an absolute must.
In addition indirect distributions were necessary for both the FIRE and IFS
benchmarks, and all kernels utilized at some stage dynamic data re-distribution.

The need for efficient parallelization of independent DO loops with indirect
addressing, conditional statements, and subroutine calls - and in some cases a
nesting of such loops - has been the central subject of the language and compiler
developments. It is not at all realistic to expect that complex, irregular codes will
be able to be re-written in F90 array statements or simple FORALL constructs.

3 High Performance Fortran

The HPF Forum [16], a group of about 40 researchers from academia and in-
dustry, with the aim of producing a standardized proposal for a data parallel
language based on Fortran. The Forum released Version 1.0 of HPF in May
1993; in November 1994, HPF Version 1.1, mainly incorporating corrections to
the language, was produced. First commercial compilers for a language subset
appeared on the market in 1995. A number of projects and studies demonstrated
the usefulness of HPF 1.1 for regular codes. However, at the same time it be-
came clear [9] that the language could not express advanced applications such
as multiblock codes, unstructured meshes, adaptive grid codes, or sparse matrix
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computations, without incurring significant overheads with respect to memory
or execution time [18].

As a consequence, the HPF Forum continued a third round of meetings in
1995 and 1996, resulting in the release of HPF 2.0 in January 1997. HPF 2.0 is
based on the current Fortran standard, Fortran 95. It consists of three parts: a)
the Base Language, b) the Approved Extensions, and c) Recognized Extrinsic
Interfaces.

3.1 The HPF Base Language

The features of the HPF Base language are basically those of HPF-1. They
include:

– Data mapping directives for the regular distribution of data across explicitly
specified sets of abstract processors: block, cyclic, and block-cyclic. Further-
more, an extensive set of mechanisms allows the control of data alignment.

– Data-parallel directives extending the array statements and the forall con-
structs of Fortran 95. The INDEPENDENT directive can be used to assert that
iterations of a loop do not have loop-carried dependences and thus can be
executed in parallel. A REDUCTION clause can be used with this directive to
identify variables which are updated by different iterations using associative
and commutative operators.

– New intrinsic and library functions include system functions to inquire about
the underlying hardware, mapping inquiry functions to inquire about the
distribution of arrays and a set of computational intrinsic functions.

– Extrinsic procedures allow the accommodation of programming paradigms
different from the HPF paradigm.

3.2 HPF+

HPF+ essentially includes the HPF-2 Base language, except that templates are
not supported, alignments and mechanisms for passing distributed arrays to
procedures are simplified, and additional features are provided that allow the
explicit equivalencing of processor arrays.

The advanced features of HPF+ allow more complex applications to be ex-
pressed using HPF. In particular, they allow greater control of the mapping of
data objects. Users can map pointers and components of derived types, and can
map objects to subsets of processors directly. The GEN BLOCK distribution gener-
alizes the block distribution by allowing non-equal sized blocks and the INDIRECT
distribution allows each element of an array to be mapped individually using a
mapping array.

Another important feature is the support of dynamic remapping of data. If
an object has been declared DYNAMIC then it can be remapped at runtime using
the REDISTRIBUTE directive.

The ON directive allows users to map computation onto processors. The
RESIDENT directive allows the specification of information about accesses to data
objects within the scope of an associated ON block.
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The above features are also included in the HPF-2 Approved Extensions.
HPF+ provides a number of additional features, in particular for the explicit
control of communication and locality.

The REUSE clause can be used to express the redundancy of a communication
schedules associated with an independent loop. It asserts to the compiler that
the schedules for all arrays are invariant for all loop executions and thus have
to be computed only once, upon first execution of the loop. This clause can be
guarded by a condition, implying that schedules should be only reused if the
condition yields true. Furthermore, the language provides schedule variables,
which may be explicitly bound to schedules by the user. This mechanism allows
the reuse of schedules beyond a single loop [3].

The HALO directive of HPF+ extends the HPF-2 SHADOW directive. It allows
the explicit specification of the set of all non-local elements of a distributed array
that are accessed during program execution. In contrast to shadows, halos may
be specified for any distribution and may be changed at runtime whenever the
distribution of an array is changed [5].

Finally, the PUREST directive can be used to characterize a pure procedure
with the additional property that its invocations do not require communication.

4 VFC

VFC [4] is a source-to-source parallelization system that translates HPF+ pro-
grams into parallel F90/MPI message-passing programs. VFC is currently avail-
able on several parallel platforms, including the QSW CS-2, the NEC Cenju-3
and Cenju-4, the NEC SX-4, the IBM SP2, PC clusters, and networks of worksta-
tions. VFC implements the HPF+ features as discussed in Section 3.2, including
general block and indirect distributions, dynamic data distribution, the reuse
clause, and the halo directive. In contrast to most commercial compilers, VFC
provides powerful parallelization strategies for non-perfectly nested irregular in-
dependent loops that may contain conditional statements or procedure calls.

4.1 Parallelization Strategies

The parallelization strategy of VFC is based on the Single-Program-Multiple-
Data (SPMD) programming model. VFC translates a source program into an
SPMD message-passing target program, which is usually parameterized in such
a way that it can be executed on an arbitrary number of processors. In order to
provide support for dynamic memory allocation, dynamic distribution/redistri-
bution, parameterization of programs by the number of processors, communica-
tion schedule reuse, separate compilation, and other features, a general, dynamic
parallelization methodology has been realized.

Distributed arrays are transformed by VFC into allocatable arrays such that,
according to the user-specified distribution directives, each processor only allo-
cates memory for those parts of an array that are owned by it. Work distribu-
tion ensures that each processor executes only parts of the computations of the
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HPF+ program and is performed either automatically based on the owner com-
putes rule, or may be controlled by the user by means of an on-clause. Potential
accesses to non-local data are handled by automatically allocating temporary
variables and generating the required communication to transfer data from the
owner processors into these temporary variables.

A major focus within the HPF+ project has been on the development of
efficient parallelization techniques for loops with indirect (vector-subscripted)
array accesses that cannot be analyzed at compile-time. This is briefly outlined
below. Moreover, VFC provides optimized parallelization strategies based on
regular section intersection for regular array assignments and loops.

4.2 Parallelization of Irregular Loops and Schedule Reuse

Irregular loop nests are transformed by VFC based on the Inspector/Executor
paradigm [12, 20] into three phases: the work distribution phase, the inspector
phase and the final executor phase.

In the work distribution phase, the iteration space of a loop nest is partitioned
among the available processors based on the ON HOME clause or using heuristics.

In the inspector phase each processor analyzes all its accesses to distributed
arrays, filters out all non-local accesses, and derives communication schedules
required for gathering/scattering non-local data from/to the owner processors.

In the executor phase all non-local data read in the loop nest is gathered
according to the computed schedules, followed by a local computation phase
executing a transformed version of the original loop. Finally, if non-local data
has been written, it is scattered back to their owner processors.

The inspector phase, in particular the computation of communication sched-
ules, is usually very time-consuming and may by far exceed the sequential exe-
cution time of a loop. Therefore, the inspector/executor scheme may be applied
with reasonable efficiency only if the communication schedules are invariant and
can be reused over many subsequent executions of a loop, amortizing the overall
preprocessing costs. Eliminating redundant inspectors and reusing communica-
tion schedules is performed by VFC based on the REUSE clause. For an inde-
pendent loop with a REUSE clause the work distributor and inspector of a loop
are guarded by means of conditional statements to enforce that they are exe-
cuted only if the reuse-condition is false or if the loop is executed for the first
time. Moreover, for distributed arrays for which the user has specified the HALO
attribute the inspector phase can be drastically simplified since communication
schedules can be computed directly from the halo at the time the distribution
is evaluated.

As shown in Section 4.4, communication schedules reuse is a key feature to
achieve acceptable performance for codes parallelized with runtime techniques.

4.3 Code Instrumentation and Performance Analysis

The instrumentation component [6] of the VFC compiler allows a selective anal-
ysis of parallelized codes by automatically inserting calls to a measurement run-
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Fig. 1. HPF+ Weather Prediction Kernel (LG). Figure (a) shows the average
time of 1 time-step of the serial kernel, of the HPF+ kernel without and with
schedule reuse, and of the hand-written message-passing kernel. Figure (b) shows
the speed-up of the MPI and HPF+ kernel with respect to the same serial version
of the kernel.

time library. During execution of an instrumented program a tracefile is gener-
ated and can be analyzed by post-execution performance analysis tools such as,
for example, MEDEA [7]. The code regions to be instrumented by VFC may
be selected by the user by means of command-line options. Using environment
variables, different tracefiles can be generated without recompiling the code.

One of the most important features of performance analysis tools is to relate
performance indices back to the original source code. The instrumentation com-
ponent addresses this issue by keeping track of the transformations performed
at compile time and storing this information in a measurement description file.
By combining the measurement description with the tracefile produced during
runtime, MEDEA is capable of providing the user with detailed performance
information at the HPF+ source code level.

4.4 Performance Results

We present performance results for two HPF+ benchmark programs and the
equivalent hand-written MPI message-passing programs on the NEC Cenju-3
distributed memory parallel computer. In order to assess the importance of com-
munication schedule reuse timings for a variant of the HPF+ kernels that did
not reuse communication schedules are also given.

The first kernel extracted from the Integrated Weather Forecasting System
(IFS) [2] addresses key issues arising in the representation of the IFS grid-point
data spaces and the transpositions performed therein. The kernel has been coded
using modules with allocatable arrays allowing to use the same executable for
different resolutions, and resembles exactly the structure used in the IFS pro-
duction code. The kernel used in our evaluation employed a grid with 134028
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Fig. 2. HPF+ Crash Simulation Kernel. This figure shows the elapsed times
(a) and the speed-up (b) of the HPF+ crash kernel (with and without schedule
reuse) and an equivalent hand-coded MPI/F77 kernel on the NEC Cenju-3.

grid points and performed a total of 1000 time-steps. As shown in Figure 1 the
HPF+ kernel performs almost as well as the hand-coded message-passing kernel
exhibiting a speed-up of 120 on 128 processors. As can also be seen, without
reusing communication schedules no acceptable performance is achieved.

The second kernel represents the basic stress-strain calculation of a crash-
simulation code [11] based on 4-node shell elements. The kernel implements an
explicit time-marching scheme which is represented by an outer time-step loop
performing 1000 iterations. From within this loop, subroutines to calculate the
shell-element forces and to update the velocities and displacements according to
the computed forces are called. The communication schedules required within
the force calculation are invariant and thus only need to be computed once, in
the first time-step. In the code this is expressed by means of the REUSE clause.
In Figure 2 two variants of the HPF+ kernel, with and without schedule reuse,
are compared to a hand-written F77 message-passing code.

5 Conclusion

The data-parallel programming paradigm supported by HPF allows the effi-
cient formulation of an important class of regular and, as demonstrated in the
HPF+ project, irregular applications. The HPF+ evaluations set the goal of
achieving absolute times approaching those possible with MPI implementations
in F77. The HPF+ language implementation within VFC has made major steps
towards reaching this goal. For the HPF+ LG kernel from ECMWF, absolute
performance essentially matched that of the MPI kernel. Otherwise the achieved
scaling with processor number is similar to that exhibited by the MPI codes.
However, for some of the kernels a major drawback remains the computational
overhead in the generated code. Another issue is that the pre-processing of com-
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plex independent loops may lead to unacceptable performance penalties if com-
munication schedules cannot be reused, as, for example, in the contact-impact
version of the crash kernel.

In summary, there are two forces dominating the further development of
HPF. First, the requirement to achieve performance comparable to the message-
passing paradigm leads to enhancements of the HPF language within the con-
straints of the data-parallel paradigm. Secondly, the emergence of new architec-
tures, such as clusters of SMPs including those with vector processors, as well as
the growing importance of heterogeneous systems, will require a generalization
of the HPF model[10] and the associated compilation and runtime technology.
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