Abstract
This paper reports the parallel implementation of adaptive mesh refinement within finite difference ocean circulation models. The implementation is based on the model of Malleable Tasks with inefficiency factor which allows a simple expression of the different levels of parallelism with a good efficiency. Our goal within this work was to validate this approach on an actual application. For that, we have implemented a load-balancing strategy based on the well-known level-by-level mapping. Preliminary experiments are discussed at the end of the paper.
Chapter PDF
References
Berger M. and J. Oliger, 1984: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys., 53, 484–512.
Blayo E. and L. Debreu, 1998: Adaptive mesh refinement for finite difference ocean models: first experiments. J. Phys. Oceanogr., 29, 1239–1250.
Bleck R., S. Dean, M. O’Keefe and A. Sawdey, 1995: A comparison of data-parallel and message passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM). Paral. Comp., 21, 1695–1720.
Hoogeveen J., Lenstra J.-K., and Veltman B., 1994: Three, four five, six, or the complexity of scheduling with communication delays. Operations Research Letters, 16, 129–137
Turek J., Wolf J. and Yu, P., 1992: Approximate algorithms for scheduling parallelizable tasks. 4th Annual ACM Symposium on Parallel Algorithms and Architectures, 323–332
Gerasoulis A. and Yang T., 1994: DSC: Scheduling Parallel Tasks on an Unbounded Number of Processors. IEEE Transaction on Parallel and Distributed Systems, 5,951–967
Scherson I.D., Subramanian S.D., Reis V.L.M. and Campos L.M., 1996: Scheduling computationally intensive data parallel programs. Placement dynamique et répartition de charge: application aux systèmes parallèles et répartis ( École Française de Parallélisme, Réseaux et Systéme), Inria, 107–129
Kumar V., Grama A., Gupta A. and Karypis G., 1994: Introduction to Parallel Computing: Design and Analysis of Algorithms, Benjamin/Cummings
Cosnard M. and Trystram D., 1993: Algorithmes et architectures parallèles. InterEditions, collection IIA.
Pedlosky J., 1987: Geophysical fluid dynamics. Springer-Verlag, 710.
Smith R.D., J.K. Dukowicz and R.C. Malone, 1992: Parallel ocean general circulation modeling. Physica D, 60, 38–61.
Wallcraft A.J. and D.R. Moore, 1997: The NRL layered ocean model. Paral. Comp., 23, 2227–2242.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blayo, E., Debreu, L., Mounié, G., Trystram, D. (1999). Dynamic Load Balancing for Ocean Circulation Model with Adaptive Meshing. In: Amestoy, P., et al. Euro-Par’99 Parallel Processing. Euro-Par 1999. Lecture Notes in Computer Science, vol 1685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48311-X_39
Download citation
DOI: https://doi.org/10.1007/3-540-48311-X_39
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66443-7
Online ISBN: 978-3-540-48311-3
eBook Packages: Springer Book Archive