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Abstract. This paper presents a parallel algorithm for solving grounded
range search in associative-function mode using the BSP-like Coarse
Grained Multicomputer (CGM). Given a set S of n weighted points in the
plane, the algorithm requires O(1) communication rounds (h-relations
with h = O(n/p)), O((n/p) log n) local computation, and O(n/p) mem-
ory per processor (n/p ≥ p), to solve m = O(n) grounded range search
problems. The result implies new or improved solutions to a number of
other geometric applications including d-dimensional range search, quad-
rant search, interval intersection, and chromatic range queries.

1 Introduction

A grounded range search query in the plane is a 2-dimensional domain given by
the 4-tuple (xmin, xmax,−∞, ymax) which specifies a geometric query range. Let
S be a set of n points in the plane with some weight w(v) assigned to each v ∈ S,
let Q be a set of m = O(n) grounded range search queries, and let ⊗ be a binary
associative function applied to a subset of weighted points.

The 2D grounded range search problem consists of determining for each q ∈ Q
either the subset of the points in S contained in the domain of q, or the number
of such points, or more generally result(q, S), the result of applying the binary
associative function ⊗ over such points. The former version of this problem
is called the report mode while the latter versions are called the counting and
associative-function modes, respectively.

The classical sequential solution to this problem in counting mode combines
the results of two dominance queries which can be answered in O(log n) time and
O(n) space using the method of [2]. This reduction from grounded range search
to dominance is applicable in this case because addition is not only associative
and commutative but also cancellative (i.e. x⊗a = y⊗a ⇒ x = y). However, for
many useful non-cancellative operators, like Max, this approach is not applicable.

The classical sequential solution to this problem in associative-function and
reporting modes uses the O(n) size priority search tree of McCreight [21] which
answers a grounded range search query in O(log n) and O(log n + t) time, re-
spectively, where t is the size of the output.
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This paper presents an efficient parallel algorithm for solving the associative-
function mode variant of the grounded range search problem for a set of m =
O(n) queries and n weighted points in the plane on a p-processor coarse grained
multicomputer with arbitrary interconnection network and local memories of size
O(n

p ), n
p ≥ p, in time O(n log n

p + Th(n, p)), where Th(n, p) is the time required
to route a single h-relation with h = O(n/p) [22, 23]. Note that the local com-
putation time of this algorithm is optimal and that it requires only a constant
number of communication rounds.

This algorithm permits efficient parallel solutions to d-dimensional range
search, quadrant search, interval intersection search, and chromatic range search.

This paper reduces the query time required for m = O(n) d-dimensional
range queries from O(n logd n

p +Th(s, p)) to O(n logd−1 n
p +Th(s, p)) in associative-

function mode without increasing the storage requirement, thus improving upon
the solution of [14] by a log n factor in search time.

This paper also presents algorithms to solve m = O(n) associate-function
mode quadrant search, interval intersection search, or chromatic range search
queries on a set of n weighted points in the plane using a p-processor coarse
grained multicomputer with arbitrary interconnection network and local mem-
ories of size O(n

p ), n
p ≥ p, in time O(n log n

p + Th(n, p)). These are, to the best of
our knowledge, the first coarse grained parallel solutions to these problems.

2 The Coarse Grained Multicomputer Model

We are using a variation of the BSP model, referred to as the Coarse Grained
Multicomputer, CGM [4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]. It is comprised of a set
of p processors P1, . . . , Pp with O(n/p) local memory per processor and an arbi-
trary communication network (or shared memory). The term “coarse grained”
refers to the fact that we assume that the size O(n/p) of each local memory is
“considerably larger” than O(1). Our definition of “considerably larger” will be
that n/p ≥ p.

All algorithms consist of alternating local computation and global communi-
cation rounds. Each communication round consists of routing a single h-relation
with h = O(n/p), i.e. each processor sends O(n/p) data and receives O(n/p)
data. We require that all information sent from a given processor to another
processor in one communication round is packed into one message. In the BSP
model, a computation/communication round is equivalent to a superstep with
L = (n/p)g (plus the above “packing” and “coarse grained” requirement).

Finding an optimal algorithm in the coarse grained multicomputer model
is equivalent to minimizing the number of communication rounds as well as
the total local computation time. This considers all parameters discussed above
that are affecting the final observed speedup, and it requires no assumption on g.
Furthermore, it has been shown that minimizing the number of supersteps also
leads to improved portability across different parallel architectures [9, 22, 23].
The above model has been used in parallel algorithm design for various problems
([3, 5, 6, 7, 8, 10, 13, 20]) and has demonstrated good practical timing results.
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We now list some operations required by our algorithms. Each of these op-
erations reduces to O(1) communication rounds for n/p ≥ p.
All-to-all broadcast: Every processor sends one message to all other processors
[6] (O((n/p)) local computation).
Personalized all-to-all broadcast: Every processor (in parallel) sends a dif-
ferent message to every other processor [6] (O((n/p)) local computation).
Partial sum (Scan): Every processor stores one value, and all processors com-
pute the partial sums of these values with respect to some associative operator
[6] (O((n/p)) local computation).
Global sort: Sort O(n) data items stored on a CGM, n/p data items per pro-
cessor, with respect to the CGM’s processor numbering. As shown in [17], for
n/p ≥ p it is possible to sort in O(1) communication rounds with O(n) memory
per processor and O((n/p) log n) local computation.
Global integer sort: Sort O(n) integers in the range 1, . . . , nc for fixed constant
c stored on a CGM, n/p data items per processor, with respect to the CGM’s
processor numbering. The sort algorithm in [17] is based on Cole’s merge sort
[16]. The O((n/p) log n) local computation in [17] is due to a constant number of
local sorts. Hence, by applying radix sort for the integer case, we obtain O(n/p)
local computation without increasing the number of communication rounds. A
CGM integer sorting algorithm with 9 communication rounds, O(n/p) memory
per processor and O(n/p) local computation can be found in [4].
Load Balance: Given a set Q̄ of m = O(n) queries where associated with
each query is a value next(q) which is the name of the substructure it next
requires and a distributed data structure S̄ which consists of p substructures S̄i

(1 ≤ i ≤ p) of size O(n/p) stored with S̄i on processor pi of a CGM(n, p). This
operation balances queries and structures such that each query q ∈ Q̄ is stored
on a processor which also stores a copy of the substructure next(q).

Algorithm 1 “Load Balance(S̄, Q̄)”.
Architecture: A p-processor coarse grained multicomputer, CGM(n, p), with ar-
bitrary interconnection network and local memories of size O(n

p ), n
p ≥ p.

Input: Each processor pi stores a set Q̄i of n/p queries from Q̄ and a substructure
S̄i of size O(n/p) from S̄. Associated with each query is the value next(q) which
is the name of the substructure it next requires.
Output: Each query q ∈ Q̄ is stored on a processor which also stores a copy of
the substructure next(q).

1 Globally compute c(S̄i) = d |{q∈Q̄|next(q)=i}|
n
p

e

2 Make c(S̄i) copies of Si and distribute them evenly such that each processor
stores at most two substructures.

3 Redistribute Q̄ evenly so that every query q ∈ Q̄ is stored on a processor
that also stores a copy of the element of S̄ which q is visiting.

— End of Algorithm —
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Note that this algorithm evenly distributes queries and substructures S̄i, such
that each processor has O(1) copies of each. This approach to load balancing is
based on a CGM technique described and analyzed in [6] and parallel integer
sorting, it requires O(1) communication rounds and O(n/p) local computation.

3 A Parallel Algorithm for Grounded Range Search

Consider a set of p horizontal lines hi which partition S into p subsets Hi of
n
p points each (with hi below Hi, and hi+1 above Hi). Analogously, consider p

vertical lines lj which partition S into p subsets Vj of n
p points each (with lj to the

left of Vj , and lj+1 to the right of Vj). For a subset A ⊂ S let w(A) =
∑

a∈A w(a).
Let Vij be the set of points of Vj that are below hi. Let H and V be the set of
points in Hi (1 ≤ i ≤ p) and Vj (1 ≤ j ≤ p), respectively which are assumed to
be in general position without loss of generality. (See Figure 1.)

lj lj+1 lj’ lj’+1

hi

hi+1

xmin xmax

ymax qt

qm

ql qr

Hi

Vj

Fig. 1. A grounded range search query with respect to a set of horizontal and
vertical partitions of the the plane.

Observation 1 For each query q ∈ Q with xmin ∈ [lj , lj+1], xmax ∈ [lj′ , lj′+1],and
ymax ∈ [hi, hi+1] let ql = (xmin, lj+1,−∞, ymax), qr = (lj′ , xmax,−∞, ymax),
qt = (lj+1, lj′ , hi, ymax), and qm = (lj+1, lj′ ,−∞, hi). Note that result(q, S) =
result(ql, Vj) ⊗ result(qr, Vj′) ⊗ result(qt, Hi) ⊗ result(qm,∪j′−1

k=j+1Vik).

Algorithm 2 “Grounded Range Search”.
Architecture: A p-processor coarse grained multicomputer, CGM(n, p), with ar-
bitrary interconnection network and local memories of size O(n

p ), n
p ≥ p.
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Input: Each processor stores n
p points of S.

Output: Each processor stores result(q, S) for each of its n
p queries q ∈ Q.

1 Globally sort S by x-coordinates such that processor pj stores Vj and lj .
Perform an all-to-all broadcast, where processor pj sends lj to all other
processors. Every processor now stores all vertical lines l1, . . . , lp.

2 Each processor pj uses l1, . . . , lp to constructs subqueries ql and qr and com-
putes next(ql) and next(qr) for each query q it stores. Let Qlr denote the
set of all ql and qr queries.

3 Call Load-Balance(V ,Qlr) and then solve all queries in Qlr sequentially as-
sociating the result with the query.

4 Globally sort a copy of S by y-coordinates such that processor pi stores Hi

and hi. Perform an all-to-all broadcast, where processor pi sends hi to all
other processors. Every processor stores now all horizontal lines h1, . . . , hp.

5 Each processor pj which stores Vj uses horizontal lines h1, . . . , hp to construct
qt and qm and compute next(qt) and next(qm) for each query q it stores. Let
Qtm denote the set of all qt and qm queries. Each processor also computes
w(Vij) for i ∈ h1, . . . , hp. Perform an all-to-all broadcast, where processor pj

sends w(Vij) to processor pi+1, 1 ≤ i < p.

6 Each processor pi which stores Hi and a part of Qtm now also stores Vi−1,j(1 ≤
j ≤ p) associated with Hi. Load-Balance(H ,Qtm) and solve the qm queries
by performing a partial sum in Vi−1,j(1 ≤ j ≤ p) and the qt queries by
sequential grounded range search. Associate the results with the query.

7 Globally sort Qlr ∪ Qtm by query index such that for each original query q
the subqueries ql, qr, qt, qm are contiguous. Use a scan operation with ⊗ to
compute the final result for each original query.

— End of Algorithm —

Theorem 1. The grounded range search problem in associative-function mode
for a set of m = O(n) queries and n weighted points in the plane can be solved
on a p-processor coarse grained multicomputer with arbitrary interconnection
network and local memories of size O(n

p ), n
p ≥ p, in time O(n log n

p + Th(n, p)),
where Th(n, p) is the time required to route a single h-relation with h = O(n/p).

Proof. The correctness of Algorithm 2 follows from Observation 1. Steps 1-3
solve the ql and qr queries in O(n log n

p ) local computation (from sorting and
sequential grounded range search) and O(1) communications rounds (from sort-
ing, load-balancing, the distribution of vertical cutting lines). Since only O(1)
copies of points and queries are made and there are at most p cutting lines the
space requirement is O(n

p + p) = O(n
p ) per processor. Steps 4-6 solve the qt and
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qm queries in O(n log n
p ) local computation (again from sorting and sequential

grounded range search) and O(1) communications rounds (from sorting, load-
balancing, and the distribution of w(Vij) and the horizontal cutting lines). Again,
since only O(1) copies of points and queries are made, and since there are at
most p cutting lines, the space requirement is O(n

p + p) = O(n
p ) per processor.

The local computation time for each step is O(n
p log n). The global commu-

nication in each step reduces to a constant number of global sorts and commu-
nication operations listed in Section 2 and the time complexity follows. 2

4 Applications

This section describes efficient parallel solutions to d-dimensional range queries,
quadrant queries, interval intersection queries, and chromatic range queries using
grounded range search.

The authors of [14] demonstrate how to construct a distributed range tree
T on a d-dimensional set S of n points on a coarse grained multicomputer in
O(n logd−1 n

p + Th(s, p)) time to answer a set Q of m = O(n) range queries in

time O(n logd n
p +Th(s, p)) in associative-function mode. If we use grounded range

search queries in the last two structural dimensions, we can reduce the query
time by a Θ(logn) factor to O(n logd−1 n

p +Th(s, p)) in associative-function mode.

Theorem 2. The d-dimensional range search problem in associative-function
mode for a set of m = O(n) queries and n weighted points in d-space can be
solved on a p-processor coarse grained multicomputer with arbitrary intercon-
nection network and local memories of size O(n logd−1 n

p ), n logd−1 n
p ≥ p, in time

O(n logd−1 n
p + Th(n, p)), where Th(n, p) is the time required to route a single

h-relation with h = O(n logd−1 n
p ).

Proof. If we use the algorithm of [14] to build a modified d-dimensional range
tree where the structures in the dth dimension are simply stored as point sets,
we can solve a d-dimensional range query by solving a (d-2)-dimensional range
query on the first (d-2) dimensions of the d-dimensional structure and solving
two grounded range search queries on the point sets associated with the left and
right children of each node in range in the dimension (d-1) substructures using
the method of Edelsbrunner [12]. 2

Given a point v=(x,y) in the plane, a quadrant query asks for all points that
lie in one of the four quadrants defined by the point. Since the quadrants are
defined by semi-infinite ranges in the x and y directions, a quadrant query may
be viewed as a grounded range search query with one side open.

Theorem 3. The quadrant search problem in associative-function mode for a
set of m = O(n) queries and n weighted points in the plane can be solved on a p-
processor coarse grained multicomputer with arbitrary interconnection network
and local memories of size O(n

p ), n
p ≥ p, in time O(n log n

p + Th(n, p)), where
Th(n, p) is the time required to route a single h-relation with h = O(n/p).
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Proof. Omitted.

Given a set S of n weighted line segments, the associative interval intersection
problem asks for the result of a binary associative operator applied to the weights
of each pair of intervals in the set S that intersect. Grounded range search may
be used to construct a very elegant solution to this problem. If we follow the
precedent of McCreight [21] and map the intervals [a, b] in S to the points (a, b)
in S′ and the query intervals [u, v] in Q to the points (u, v) in Q′, we can solve our
interval intersection queries by performing a quadrant search on [u,∞)∗(−∞, v]
for each query point q′ = (u, v) in Q.

Theorem 4. The interval intersection search problem in associative-function
mode for a set of m = O(n) queries and n weighted points in the plane can
be solved on a p-processor coarse grained multicomputer with arbitrary intercon-
nection network and local memories of size O(n

p ), n
p ≥ p, in time O(n log n

p +
Th(n, p)), where Th(n, p) is the time required to route a single h-relation with
h = O(n/p).

Proof. Omitted.

Janardan and Lopez [19] define a chromatic query as a query on a set S of n
geometric objects which belong to g disjoint groups, each labeled with a color,
and it is the groups, and not the objects, which are of interest. In associative
mode, the groups are weighted and a chromatic range query is a range query
which asks for the result of the repeated application of a binary associative
operator to each group that contains a datapoint located in the given range.

Theorem 5. The chromatic search problem in associative-function mode for a
set of m = O(n) queries and n weighted points in the plane can be solved on a p-
processor coarse grained multicomputer with arbitrary interconnection network
and local memories of size O(n

p ), n
p ≥ p, in time O(n log n

p + Th(n, p)), where
Th(n, p) is the time required to route a single h-relation with h = O(n/p).

Proof. If we use the technique of Gupta, Janardan, and Smid [18] and transform
each point p in S to the point p′ = (p, pred(p)) in S′ where pred(p) is its imme-
diate predecessor of the same color (or −∞ if the point p has no predecessor).
Note that this transformation is such that there is a point p of color c in the
query interval q = [l, r] if and only if there is a point p′ of color c in the grounded
query rectangle q′ = [l, r] ∗ (−∞, l). Thus, we can use a grounded range search
on the transformed point set S′. 2
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