Skip to main content

Estimating Large Distances in Phylogenetic Reconstruction

  • Conference paper
  • First Online:
Algorithm Engineering (WAE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1668))

Included in the following conference series:

Abstract

A major computational problem in biology is the reconstruction of evolutionary (a.k.a. “phylogenetic”) trees from biomolecular sequences. Most polynomial time phylogenetic reconstruction methods are distance-based, and take as input an estimation of the evolutionary distance between every pair of biomolecular sequences in the dataset. The estimation of evolutionary distances is standardized except when the set of biomolecular sequences is “saturated”, which means it contains a pair of sequences which are no more similar than two random sequences. In this case, the standard statistical techniques for estimating evolutionary distances cannot be used. In this study we explore the performance of three important distance-based phylogenetic reconstruction methods under the various techniques that have been proposed for estimating evolutionary distances when the dataset is saturated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bruno, N. Socci, and A. Halpern. Weighted Neighbor Joining: A fast approximation to maximum-likelihood phylogeny reconstruction. Submitted to Mol. Bio. Evol., 1998.

    Google Scholar 

  2. T. Bruns, T. Szaro, M. Gardes, K. Cullings, J. Pan, D. Taylor, T. Horton, A. Kretzer, M. Garbelotto, and Y. Li. A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Molecular-Ecology, 7(3), March 1998. Accession Number 199800223328.

    Google Scholar 

  3. P. Buneman. The recovery of trees from measures of dissimilarity. In Mathematics in the Archaeological and Historical Sciences, pages 387–395. Edinburgh University Press, 1971.

    Google Scholar 

  4. K. A. Crandall and J. F. Fitzpatrick. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology, 45(1):1–26, March 1996.

    Article  Google Scholar 

  5. K. Cullings and D. Vogler. A 5.8s nuclear ribosomal rna gene sequence database: Applications to ecology and evolution. Molecular Ecology, 7(7):919–923, July 1998. Accession number 199800404928.

    Article  Google Scholar 

  6. J. Felsenstein. Phylogenies from molecular sequences: inference and reliability. Annu. Rev. Genet., 22:521–565, 1988.

    Article  Google Scholar 

  7. O. Gascuel. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol., 14:685–695, 1997.

    Article  Google Scholar 

  8. D. Hillis. Inferring complex phylogenies. Nature, 383:130–131, 12 September 1996.

    Article  Google Scholar 

  9. D. Hillis, J. Huelsenbeck, and C. Cunningham. Application and accuracy of molecular phylogenies. Science, 264:671–677, 1994.

    Article  Google Scholar 

  10. J. Huelsenbeck. Performance of phylogenetic methods in simulation. Syst. Biol., 44:17–48, 1995.

    Article  Google Scholar 

  11. J. Huelsenbeck and D. Hillis. Success of phylogenetic methods in the four-taxon case. Syst. Biol., 42:247–264, 1993.

    Article  Google Scholar 

  12. D. Huson, S. Nettles, K. Rice, and T. Warnow. Hybrid tree reconstruction methods. In Proceedings of the “Workshop on Algorithm Engineering”, Saarbrücken, pages 172–192, 1998.

    Google Scholar 

  13. T. Jukes and C. Cantor. Evolution of protein molecules. In H. Munro, editor, Mammalian Protein Metabolism, pages 21–132. Academic Press, 1969.

    Google Scholar 

  14. M. Kuhner and J. Felsenstein. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol., 11:459–468, 1994.

    Google Scholar 

  15. A. Rambaut and N. Grassly. An application for the monte carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci., 13(3):235–238, 1997.

    Google Scholar 

  16. K. Rice, M. Donoghue, and R. Olmstead. Analyzing large data sets: rbcL 500 revisited. Syst. Biol., 46(3):554–563, 1997.

    Article  Google Scholar 

  17. N. Saitou and T. Imanishi. Relative efficiencies of the Fitch-Margoliash, maximum parsimony, maximum likelihood, minimum evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Mol. Biol. Evol., 6:514–525, 1989.

    Google Scholar 

  18. N. Saitou and M. Nei. The Neighbor-Joining method: a new method, for reconstructing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

    Google Scholar 

  19. M. Schöniger and A. von Haeseler. Performance of maximum likelihood, neighborjoining, and maximum parsimony methods when sequence sites are not independent. Syst. Biol., 44(4):533–547, 1995.

    Article  Google Scholar 

  20. J. Sourdis and M. Nei. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol., 5(3):293–311, 1996.

    Google Scholar 

  21. D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Chapter 11: Phylogenetic inference. In D. M. Hillis, C. Moritz, and B. K. Mable, editors, Molecular Systematics, pages 407–514. Sinauer Associates, Inc., 2nd edition, 1996.

    Google Scholar 

  22. M. Waterman, T. Smith, and W. Beyer. Additive evolutionary trees. Journal Theoretical Biol., 64:199–213, 1977.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huson, D.H., Smith, K.A., Warnow, T.J. (1999). Estimating Large Distances in Phylogenetic Reconstruction. In: Vitter, J.S., Zaroliagis, C.D. (eds) Algorithm Engineering. WAE 1999. Lecture Notes in Computer Science, vol 1668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48318-7_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-48318-7_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66427-7

  • Online ISBN: 978-3-540-48318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics