Skip to main content

Randomized complexity of linear arrangements and polyhedra?

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1684))

Included in the following conference series:

  • 383 Accesses

Abstract

We survey some of the recent results on the complexity of recognizing n-dimensional linear arrangements and convex polyhedra by randomized algebraic decision trees. We give also a number of concrete applications of these results. In particular, we derive first nontrivial, in fact quadratic, randomized lower bounds on the problems like Knapsack and Bounded Integer Programming. We formulate further several open problems and possible directions for future research.

Article

Research partially supported by the DFG Grant KA 673/4-1, ESPRIT BR Grants 7079, 21726, and EC-US 030, by DIMACS, and by the Max-Planck Research Prize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

    Google Scholar 

  2. M. Ben-Or, Lower Bounds for Algebraic Computation Trees, Proc. 15th ACM STOC (1983), pp. 80–86.

    Google Scholar 

  3. A. Björner, L. Lov’asz and A. Yao, Linear Decision Trees: Volume Estimates and Topological Bounds, Proc. 24th ACM STOC (1992), pp. 170–177.

    Google Scholar 

  4. A. Borodin, Time Space Tradeoffs (Getting Closer to the Barrier?), Proc. ISAAC’93, LNCS 762 (1993), Springer, 1993, pp. 209–220.

    Google Scholar 

  5. A. Borodin, R. Ostrovsky and Y. Rabani, Lower Bounds for High Dimensional Nearest Neighbour Search and Related Problems, Proc. 31st ACM STOC (1999), pp. 312–321.

    Google Scholar 

  6. P. Bürgisser, M. Karpinski and T. Lickteig, On Randomized Algebraic Test Complexity, J. of Complexity 9 (1993), pp. 231–251.

    Article  MATH  Google Scholar 

  7. F. Cucker, M. Karpinski, P. Koiran, T. Lickteig, K. Werther, On Real Turing Machines that Toss Coins, Proc. 27th ACM STOC (1995), pp. 335–342.

    Google Scholar 

  8. D.P. Dobkin and R. J. Lipton, A Lower Bound of 1/2n 2 on Linear Search Programs for the Knapsack Problem, J. Compt. Syst. Sci. 16 (1978), pp. 413–417.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Edelsbrunner, Algorithms in Computational Geometry, Springer, 1987.

    Google Scholar 

  10. R. Freivalds and M. Karpinski, Lower Time Bounds for Randomized Computation, Proc. 22nd ICALP’95, LNCS 944, Springer, 1995, pp. 183–195.

    Google Scholar 

  11. B. Grünbaum, Convex Polytopes, John Wiley, 1967.

    Google Scholar 

  12. D. Grigoriev and M. Karpinski, Lower Bounds on Complexity of Testing Membership to a Polygon for Algebraic and Randomized Computation Trees, Technical Report TR-93-042, International Computer Science Institute, Berkeley, 1993.

    Google Scholar 

  13. D. Grigoriev and M. Karpinski, Lower Bound for Randomized Linear Decision Tree Recognizing a Union of Hyperplanes in a Generic Position, Research Report No. 85114-CS, University of Bonn, 1994.

    Google Scholar 

  14. D. Grigoriev and M. Karpinski, Randomized μ(n2) Lower Bound for Knapsack, Proc. 29th ACM STOC (1997), pp. 76–85.

    Google Scholar 

  15. D. Grigoriev, M. Karpinski, F. Meyer auf der Heide and R. Smolensky, A Lower Bound for Randomized Algebraic Decision Trees, Comput. Complexity 6 (1997), pp. 357–375.

    Article  Google Scholar 

  16. D. Grigoriev, M. Karpinski, and R. Smolensky, Randomization and the Computational Power of Analytic and Algebraic Decision Trees, Comput. Complexity 6 (1997), pp. 376–388.

    Article  MathSciNet  Google Scholar 

  17. D. Grigoriev, M. Karpinski and N. Vorobjov, Lower Bound on Testing Membership to a Polyhedron by Algebraic Decision Trees, Discrete Comput. Geom. 17 (1997), pp. 191–215.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Grigoriev, M. Karpinski and A. C. Yao, An Exponential Lower Bound on the Size of Algebraic Decision Trees for MAX, Computational Complexity 7 (1998), pp. 193–203.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Grigoriev, Randomized Complexity Lower Bounds, Proc. 30th ACM STOC (1998), pp. 219–223.

    Google Scholar 

  20. M. Karpinski, On the Computational Power of Randomized Branching Programs, Proc. Randomized Algorithms 1998, Brno, 1998, pp. 1–12.

    Google Scholar 

  21. M. Karpinski, Randomized OBDDs and the Model Checking, Proc. Probabilistic Methods in Verification, PROBMIV’98, Indianapolis, 1998, pp. 35–38.

    Google Scholar 

  22. M. Karpinski and F. Meyer auf der Heide, On the Complexity of Genuinely Polynomial Computation, Proc. MFCS’90, LNCS 452, Springer, 1990, pp. 362–368.

    Google Scholar 

  23. M. Karpinski and R. Verbeek, Randomness, Provability, and the Separation of Monte Carlo Time and Space, LNCS 270 (1988), Springer, 1988, pp. 189–207.

    Google Scholar 

  24. S. Lang, Algebra, Addison-Wesley, New York, 1984.

    MATH  Google Scholar 

  25. U. Manber and M. Tompa, Probabilistic, Nondeterministic and Alternating Decision Trees, J. ACM 32 (1985), pp. 720–732.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Meiser, Point Location in Arrangements of Hyperplanes, Information and Computation 106 (1993), pp. 286–303.

    Article  MATH  MathSciNet  Google Scholar 

  27. F. Meyer auf der Heide, A Polynomial Linear Search Algorithm for the n-Dimensional Knapsack Problem, J. ACM 31 (1984), pp. 668–676.

    Article  MATH  Google Scholar 

  28. F. Meyer auf der Heide, Nondeterministic versus Probabilistic Linear Search Algorithms, Proc. IEEE FOCS (1985a), pp. 65–73.

    Google Scholar 

  29. F. Meyer auf der Heide, Lower Bounds for Solving Linear Diophantine Equations on Random Access Machines, J. ACM 32 (1985), pp. 929–937.

    Article  MATH  Google Scholar 

  30. F. Meyer auf der Heide, Simulating Probabilistic by Deterministic Algebraic Computation Trees, Theoretical Computer Science 41 (1985c), pp. 325–330.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Milnor, On the Betti Numbers of Real Varieties, Proc. Amer. Math. Soc. 15 (1964), pp. 275–280.

    Article  MATH  MathSciNet  Google Scholar 

  32. M.O. Rabin, Proving Simultaneous Positivity of Linear Forms, J. Comput. Syst. Sciences 6 (1972), pp. 639–650.

    Google Scholar 

  33. A. Razborov, Lower Bounds for Deterministic and Nondeterministic Branching Programs, Proc. FCT’91, LNCS 529, Springer, 1991, pp. 47–60.

    Google Scholar 

  34. J. Simon and W.J. Paul, Decision Trees and Random Access Machines, L’Enseignement Mathematique. Logic et Algorithmic, Univ. Geneva, 1982, pp. 331–340.

    Google Scholar 

  35. M. Snir, Lower Bounds for Probabilistic Linear Decision Trees, Theor. Comput. Sci. 38 (1985), pp. 69–82.

    Article  MATH  MathSciNet  Google Scholar 

  36. J.M. Steele and A.C. Yao, Lower Bounds for Algebraic Decision Trees, J. of Algorithms 3 (1982), pp. 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California Press, 1951.

    Google Scholar 

  38. J. S. Thathachar, On Separating the Read-k-Times Branching Program Hierarchy, Proc. 30th ACM STOC (1998), pp. 653–662.

    Google Scholar 

  39. R. Thom, Sur L’Homologie des Varièetès Algèbriques Rèelles, Princeton University Press, Princeton, 1965.

    Google Scholar 

  40. H.F. Ting and A.C. Yao, Randomized Algorithm for finding Maximum with O((log n)2) Polynomial Tests, Information Processing Letters 49 (1994), pp. 39–43.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Wigderson and A.C. Yao, A Lower Bound for Finding Minimum on Probabilistic Decision Trees, to appear.

    Google Scholar 

  42. A.C. Yao, A Lower Bound to Finding Convex Hulls, J. ACM 28 (1981), pp. 780–787.

    Article  MATH  Google Scholar 

  43. A.C. Yao, On the Time-Space Tradeoff for Sorting with Linear Queries, Theoretical Computer Science 19 (1982), pp. 203–218.

    Article  MATH  MathSciNet  Google Scholar 

  44. A.C. Yao, Algebraic Decision Trees and Euler Characteristics, Proc. 33rd IEEE FOCS (1992), pp. 268–277.

    Google Scholar 

  45. A.C. Yao, Decision Tree Complexity and Betti Numbers, Proc. 26th ACM STOC (1994), pp. 615–624.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karpinski, M. (1999). Randomized complexity of linear arrangements and polyhedra?. In: Ciobanu, G., Păun, G. (eds) Fundamentals of Computation Theory. FCT 1999. Lecture Notes in Computer Science, vol 1684. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48321-7_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-48321-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66412-3

  • Online ISBN: 978-3-540-48321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics