Abstract
In this article, we deal with fast algorithms for the quaternionic Fourier transform (QFT). Our aim is to give a guideline for choosing algorithms in practical cases. Hence, we are not only interested in the theoretic complexity but in the real execution time of the implementation of an algorithm. This includes floating point multiplications, additions, index computations and the memory accesses. We mainly consider two cases: the QFT of a real signal and the QFT of a quaternionic signal. For both cases it follows that the row-column method yields very fast algorithms. Additionally, these algorithms are easy to implement since one can fall back on standard algorithms for the fast Fourier transform and the fast Hartley transform. The latter is the optimal choice for real signals since there is no redundancy in the transform. We take advantage of the fact that each complete transform can be converted into another complete transform. In the case of the complex Fourier transform, the Hartley transform, and the QFT, the conversions are of low complexity. Hence, the QFT of a real signal is optimally calculated using the Hartley transform.
This work was supported by the DFG (So-320/2-1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. N. Bracewell. The Fourier transform and its applications. McGraw Hill, 1986.
T. Bülow and G. Sommer. Algebraically Extended Representation of Multi-Dimensional Signals. In Proceedings of the 10th Scandinavian Conference on Image Analysis, pages 559–566, 1997.
T. Bülow and G. Sommer. Multi-Dimensional Signal Processing Using an Algebraically Extended Signal Representation. In G. Sommer and J.J. Koenderink, editors, Int'l Workshop on Algebraic Frames for the Perception-Action Cycle, AFPAC'97, Kiel, volume 1315 of LNCS, pages 148–163. Springer, 1997.
V. M. Chernov. Discrete orthogonal transforms with data representation in composition algebras. In Proceedings of the 9th Scandinavian Conference on Image Analysis, pages 357–364, 1995.
Digital Equipment Corporation. Digital Semiconductor Alpha 21164PC Microprocessor Data Sheet3, 1997.
T. A. Ell. Hypercomplex Spectral Transformations. PhD thesis, University of Minnesota, 1992.
M. Felsberg. Signal Processing Using Frequency Domain Methods in Clifford Algebra4. Master’s thesis, Christian-Albrechts-University of Kiel, 1998.
M. Felsberg et al. Fast Algorithms of Hypercomplex Fourier Transforms. In G. Sommer, editor, Geometric Computing with Clifford Algebra, Springer Series in Information Sciences. Springer, Berlin, 1999. to appear.
B. Jähne. Digitale Bildverarbeitung. Springer, Berlin, 1997.
W. Press et al. Numerical Recipes in C. Cambridge University Press, 1994.
Silicon Graphics, Inc. MIPS RISC Technology R10000 Microprocessor Technical Brief, 1998.
Sun Microsystems, Inc. UltraSPARC-II Data Sheet6, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Felsberg, M., Sommer, G. (1999). Optimized Fast Algorithms for the Quaternionic Fourier Transform. In: Solina, F., Leonardis, A. (eds) Computer Analysis of Images and Patterns. CAIP 1999. Lecture Notes in Computer Science, vol 1689. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48375-6_26
Download citation
DOI: https://doi.org/10.1007/3-540-48375-6_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66366-9
Online ISBN: 978-3-540-48375-5
eBook Packages: Springer Book Archive