Skip to main content

“Seeing“ Objects in Spatial Datasets

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis (IDA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1642))

Included in the following conference series:

Abstract

Regularities exist in datasets describing spatially distributed physical phenomena. Human experts often understand and verbalize the regularities as abstract spatial objects evolving coherently and interacting with each other in the domain space. We describe a novel computational approach for identifying and extracting these abstract spatial objects through the construction of a hierarchy of spatial relations. We demonstrate the approach with an application to finding troughs in weather data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Bailey-Kellogg and F. Zhao. Influence-based model decomposition. In Proceedings of AAAI, to appear, 1999.

    Google Scholar 

  2. J.G Dunham. Optimum uniform piecewise linear approximation of planar curves. IEEE Trans. Pattern Analysis Mach. Intell., PAMI-8:67–75, 1986.

    Article  Google Scholar 

  3. K. Forbus, P. Nielsen, and B. Faltings. Qualitative kinematics: A framework. In Proceedings of AAAI, 1987.

    Google Scholar 

  4. X. Huang and F. Zhao. Segmentation of planar curves and the iterative thresholding technique. Technical Report OSU-CISRC-3/99-TR07, CIS, Ohio State Univ, 1999.

    Google Scholar 

  5. L. Joskowicz and E. Sacks. Computational kinematics. Artificial Intelligence, 51:381–416, 1991.

    Article  Google Scholar 

  6. E. M. Knorr and R. T. Ng. Finding aggregate proximity relationships and commonalities in spatial data mining. IEEE Trans. on Knowledge and Data Engineering, 8:884–897, December 1996.

    Article  Google Scholar 

  7. M. Lundell. A qualitative model of physical fields. In Proceedings of AAAI, 1996.

    Google Scholar 

  8. R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proceedings of the Twentieth International Conference on Very Large Databases, pages 144–155, Santiago, Chile, 1994.

    Google Scholar 

  9. T. Pavlidis and S. L. Horowitz. Segmentation of plane curves. IEEE Trans. Computer, C-22:860–870, 1974.

    Article  MathSciNet  Google Scholar 

  10. R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and tracking their evolution. IEEE Computer Magazine, July 1994.

    Google Scholar 

  11. Air Weather Service. Back to basics. In AWS FOT Seminar STT-Q9-0004, 1975.

    Google Scholar 

  12. D. Silver and N. Zabusky. Quantifying visualizations for reduced modeling in nonlinearscience: Extracting structures from data sets. Journal of Visual Communication and Image, 4:46–61, 1993.

    Article  Google Scholar 

  13. S. Ullman. Visual routines. Cognition, 18, 1984.

    Google Scholar 

  14. S. Ullman. Chapter 2: Approaches to object recognition. In High Level Vision. MIT Press, 1996.

    Google Scholar 

  15. J. A. Ventura and J. M. Chen. Segmentation of two-dimensional curve contours. Pattern Recognition, 28:1129–1140, 1992.

    Article  Google Scholar 

  16. K. M. Yip. KAM: A system for intelligently guiding numerical experimentation by computer. MIT Press, 1991.

    Google Scholar 

  17. K. M. Yip. Structural inferences from massive datasets. In Proceedings of IJCAI, 1997.

    Google Scholar 

  18. K. M. Yip and F. Zhao. Spatial aggregation: theory and applications. J. Artificial Intelligence Research, 5, 1996.

    Google Scholar 

  19. F. Zhao. Extracting and representing qualitative behaviors of complex systems in phase spaces. Artificial Intelligence, 69(1-2):51–92, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Zhao, Intelligent simulation in designing complex dynamical control systems. Book chapter in Artificial Intelligence in Industrial Decision Making, Control, and Automation, Tzafestas and Verbruggen (eds.), pp. 127–158, Kluwer, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, X., Zhao, F. (1999). “Seeing“ Objects in Spatial Datasets. In: Hand, D.J., Kok, J.N., Berthold, M.R. (eds) Advances in Intelligent Data Analysis. IDA 1999. Lecture Notes in Computer Science, vol 1642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48412-4_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-48412-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66332-4

  • Online ISBN: 978-3-540-48412-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics