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Abstract. In many modern data analysis scenarios the first and most
urgent task consists of reducing the redundancy in high dimensional in-
put spaces. A method is presented that quantifies the discriminative
power of the input features in a fuzzy model. A possibilistic information
measure of the model is defined on the basis of the available fuzzy rules
and the resulting possibilistic information gain, associated with the use
of a given input dimension, characterizes the input feature’s discrimi-
native power. Due to the low computational expenses derived from the
use of a fuzzy model, the proposed possibilistic information gain gen-
erates a simple and efficient algorithm for the reduction of the input
dimensionality, even for high dimensional cases. As real-world example,
the most informative electrocardiographic measures are detected for an
arrhythmia classification problem.

1 Introduction

In the last years it has become more and more common to collect and store
large amounts of data from different sources [1]. However a massive recording
of system’s monitoring variables does not grant a better performance of further
analysis procedures, if no new information is introduced in the input space.
In addition the analysis procedure itself becomes more complicated for high
dimensional input spaces and insights about the system’s underlying structure
more difficult to achieve.

An evaluation of the effectiveness of every input feature in describing the un-
derlying system can supply new information and simplify further analysis. The
detection of the most informative input features, that is the features character-
izing at best the underlying system, reduces time and computational expenses
of any further analysis and makes easier the detection of crucial parameters for
data analysis and/or system modeling.

A quite common approach for the evaluation of the effectiveness of the input
features defines some feature merit measures, on the basis of a statistical model
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of the system [2, 1]. Assuming that a large database is available, the proba-
bility estimations, involved in the definition of the feature merit measures, are
performed by means of the events frequencies, which require a precise defini-
tion of the input parameters and a clear identification of the output classes. In
many real world applications, however, estimated frequencies are unavoidably
alterated by doubtful members of the output classes and by an inaccurate de-
scription of the input parameters. In addition the estimation of a probabilistic
model is computationally expensive for high dimensional input spaces.

The concept of fuzzy sets was introduced in [3] with the purpose of a more
efficient, though less detailed, description of real world events, allowing an ap-
propriate amount of uncertainty. Fuzzy set theory yields also the advantage of
a number of simple and computationally inexpensive methods to model a given
training set. Based on the fuzzy set theory, some measures of fuzzy entropy have
been established [4, 5] as measures of the degree of fuzziness of the model with
respect to the training data. All the defined measures involve the data points
into the fuzzy entropy calculation, in order to represent the uncertainty of the
model in describing the training data.

In this paper an analysis “a posteriori” of fuzzy systems is proposed, to
evaluate the discriminative power of the input features in characterizing the
underlying system. A measure of possibilistic information is defined only on
the basis of fuzzy rules. The separability of the different membership functions
is measured on every input dimension and the input dimension with highest
separability defines the most discriminative input feature, at least according to
the analyzed fuzzy model. All that is based on the hypothesis that the fuzzy
model describes with sufficient accuracy the data of the training set, that is that
a sufficiently general training set has been used for the fuzzy rules inference.
The main advantage of analyzing fuzzy rules, instead of fuzzy rules and training
data as in [4, 5], consists of the highly reduced computational costs for the same
amount of information, provided that the fuzzy model faithfully describes the
underlying data structure.

The detection and ranking of the most effective input variables for a given
task could represent one of the first steps in any data analysis process. The
implementation of a fuzzy model requires generally a short amount of time even
in case of very high dimensional input spaces and so does the corresponding
evaluation of the discriminative power of the input features. Whenever a more
accurate system’s representation is wished, the analysis can continue with the
application of more sophisticated and more computationally expensive analysis
techniques on the most effective input features, pre-screened on the basis of the
proposed possibilistic information.

2 Possibilistic Feature Merit Measures

2.1 A Possibility Measure

Given a number m of output classes Ci, i = 1, . . . , m, and an n-dimensional
input space, numerous algorithms exist, which derive a set of NR fuzzy rules [3]
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{Rk}, k = 1, . . . , NR, mapping the n-dimensional input into the m-dimensional
output space. This set of rules models the relationships between the input data
x ∈ Rn and the output classes Ci. Each input pattern x = [x1, . . . , xn]T is
associated to each output class Ci by means of a membership value µCi(x). In
figure 1.a an example is reported with a two-dimensional input space {x1, x2},
two output classes C1 and C2, and with trapezoids as membership functions
µC1(x) and µC2(x) describing the relationships between the input data and the
two output classes.

The membership function µCi(x) quantifies the degree of membership of
input pattern x to output class Ci. Its volume V (Ci), as defined in eq. 1, therefore
represents a measure of the possibility of output class Ci, on the basis of the given
input space D ⊂ Rn. Considering normalized membership functions µCi(x), a
larger volume V (Ci) indicates a class of the output space with higher degree
of possibility. An output class represented by a membership function, which
takes value +1 everywhere on the input space, is always possible. A membership
function with volume V (Ci) = 0 indicates an impossible class.

V (Ci) =
∫ 1

0

∫
x∈D

µCi(x) dx dµ (1)

The overall possibility of the whole output space C = {C1, C2, . . . , Cm} can
be defined through the available fuzzy mapping system {Rk}={R1, R2,. . . , RNR}
as the sum of all the class possibilities V (Ci), i = 1, . . . , m. The relative contri-
bution v(Ci) of output class Ci to the whole output space’s possibility is given
in eq. 2.

v(Ci) =
V (Ci)∑m

j=1 V (Cj)
(2)

In case the output class Ci is described by Qi > 1 fuzzy rules, the possibility
of class Ci is given by the possibility of the union of these q = 1, . . . , Qi fuzzy
subsets of class Ci, each with membership functions µq

Ci
(x). The possibility of the

union of membership functions can be expressed as the sum of their possibilities,
taking care of including the intersection possibility only once (eq. 3). If trapezoids
are adopted as membership functions, the possibility of each fuzzy rule Vq(Ci)
becomes particularly simple to calculate [6].

V (Ci) = V
(
∪Qi

q=1 Vq(Ci)
)

=
∫ 1

0

∫
x∈D

∪Qi

q=1 µq
Ci

(x) dx dµ =

=
Qi∑
q=1


Vq(Ci)−

Qi∑
h=q+1

Vq(Ci) ∩ Vh(Ci)


 (3)

2.2 A Possibilistic Information Measure

The variable v(Ci) quantifies the possibility of class Ci relatively to the possi-
bility of the whole output space and according to the fuzzy rules used to model
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the input-output relationships. v(Ci), as defined in eq. 2, can then be adopted
as the basic unit to measure the possibilistic information associated with class
Ci. With respect to a probabilistic model, the employment of the relative pos-
sibility of class Ci, v(Ci), takes into account the possible occurrence of multiple
classes for any input pattern x and the calculation of the relative volume v(Ci)
is generally easier than the estimation of a probability function.

As in the traditional information theory, the goal is to produce a possibilistic
information measure, that is [1]:

1. at its maximum if all the output classes are equally possible, i. e. v(Ci) = 1
m

for i = 1, . . . , m, m being the number of output classes;
2. at its minimum if only one output class Ci is possible, i. e. in case v(Cj) = 0

for j 6= i;
3. a symmetric function of its arguments, because the dominance of one class

over the others must produce the same amount of possibilistic information,
independently of which the favorite class is.

In order to produce a measure of the global possibilistic information I(C)
of the output space C = {C1, . . . , Cm}, the traditional functions employed in
information theory – as the entropy function IH(C) (eq. 4) and the Gini function
IG(C) (eq. 5) [1, 2] – can then be applied to the relative possibilities v(Ci) of
the output classes.

IH(C) = −
m∑

i=1

v(Ci) log2 (v(Ci)) (4)

IG(C) = 1 −
m∑

i=1

(v(Ci))2 (5)

In both cases, entropy and Gini function, I(C) represents the amount of pos-
sibilistic information intrinsically available in the fuzzy model. In particular not
all the input features are effective the same way in extracting and representing
the information available in the training set through the fuzzy model. The goal
of this paper is to make explicit which dimension of the input space is the most
effective in recovering the intrinsic possibilistic information I(C) of the fuzzy
model.

2.3 The Information Gain

Given a fuzzy description of the input space {Rk} with intrinsic possibilistic
information I(C), a feature merit measure must describe the information gain
derived by the employment of any input feature xj in the model. Such informa-
tion gain is expressed as the relative difference between the intrinsic information
of the system before, I(C), and after using that variable xj for the analysis,
I(C|xj), (eq. 6). The xj input features producing the highest information gains
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are the most effective in the adopted model to describe the input space, and
therefore the most informative for the proposed analysis.

g(C|xj) =
I(C)− I(C|xj)

I(C)
(6)

Let us suppose that the input variable xj is related to the output classes by
means of a number NR of membership functions µq

Ci
(xj), with q = 1, . . . , Qi

membership functions for every output class Ci, for i = 1, . . . , m output classes,
and NR =

∑m
i=1 Qi. The use of input variable xj for the final classification con-

sists of the definition of an appropriate set of thresholds along input dimension
j, that allow the best separation of the different output classes. A set of cuts is
then created on the j-th input dimension, to separate the F ≤ NR contiguous
trapezoids related to different output classes.

If trapezoids are adopted as membership functions of the fuzzy model, the
optimal cut between two contiguous trapezoids is located at the side intersection,
if the trapezoids overlap on the sides; at the middle point of the overlapping flat
regions, if the trapezoids overlap in their flat regions; at the middle point between
the two trapezoids, if they do not overlap.

Between two consecutive cuts, a linguistic value Lk (k = 1, . . . , F ) can be
defined for parameter xj . Considering xj = Lk corresponds to isolating one stripe
ck on the input space. In stripe ck new membership functions µq(Ci|xj = Lk) to
the output classes Ci are derived as the intersections of the original membership
functions µq

Ci
(x) with the segment xj = Lk. Each stripe ck is characterized by a

local possibilistic information I(ck) = I(C|xj = Lk) (eq. 4 or 5). The average
possibilistic information I(C|xj), derived by the use of variable xj in the fuzzy
model, corresponds to the averaged sum of the local possibilistic information of
stripes ck (eq. 7).

I(C|xj) =
1
F

F∑
k=1

I(C|xj = Lk) (7)

The less effective the input feature xj is in the original set of fuzzy rules, the
closer the remaining I(C|xj) is to the original possibilistic information I(C) of
the model and the lower the corresponding information gain is, as described in
eq. 6. Every parameter xj produces an information gain g(C|xj) expressing its
effectiveness in performing the required classification on the basis of the given
fuzzy model. The proposed information gain can be adopted as a possibilistic
feature merit measure.

2.4 An Example

In figure 1 an example is shown for a two-dimensional input space, two output
classes, and with trapezoids as membership functions. The corresponding intrin-
sic possibilistic information of the original model I(C) is reported in table 1.
The average information of the system, I(C|x1) and I(C|x2), respectively after
dimension x1 and x2 have been used for the classification, are reported in table
2 together with the corresponding information gains g(C|x1) and g(C|x2).



92

x 1

cut on x1

x 1IF is S

C1

x 2

x 2

2

4

6

8

C2

C2

x 1

86 1042

C1
x 1

86 1042

2

4

6

8

x 2

C2

x 1 is LIF 

C1

x 2

x 1

86 1042
0

4

2x 2
IF

 
is

 Y
x 2

IF
 

is
 O

C1

x 2

8

6

4

C2

x 1

86 1042

cut on x2

LS
0 2 4 6 8 10

2

4

6

8

O

Y

0 0

c)

b)

a)

...
Fig. 1. New data spaces cutting on variable b) x2 and c) x1

A cut between the two membership functions on dimension x2 (Fig. 1.b)
produces a better separation than a cut on dimension x1 (Fig. 1.c). That is the
analysis on dimension x2 offers a higher gain in information than the analysis
on dimension x1. This is indicated by g(C|x1) < g(C|x2) either considering
I() as the entropy or the Gini function (Tab. 2). From the comparison of the
information gains, g(C|x1) and g(C|x2), the analysis on variable x2 supplies
more of the information available in the fuzzy model than the analysis carried
on variable x1. The same conclusion could have been reached using I(C|x1) >
I(C|x2), but an information description through the gain function produces more
clear results than using directly the possibilistic information parameter I(C|xj).

3 Real World Applications

The results in the previous section show the efficiency of the proposed possi-
bilistic feature merit measures in detecting the input dimensions with maximum
information content. In this section some experiments on real world databases are

Table 1. The fuzzy information measures for the two dimensional example

C1 C2 IH(C) IG(C)

V (C1) = 13.0 V (C2) = 12.6
0.99 0.49

v(C1) = 0.51 v(C2) = 0.49
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Table 2. I(C|xj) and g(C|xj)

x1 = S x1 = L x2 = Y x2 = O

V (C1|x1) = 0.53 V (C1|x1) = 13.0 V (C1|x2) = 13.0 V (C1|x2) = 0.00
V (C2|x1) = 12.6 V (C2|x1) = 0.53 V (C2|x2) = 0.00 V (C2|x2) = 12.6
v(C1|x1) = 0.04 v(C1|x1) = 0.96 v(C1|x2) = 1.0 v(C1|x2) = 0.00
v(C2|x1) = 0.96 v(C2|x1) = 0.04 v(C2|x2) = 0.00 v(C2|x2) = 1.0

IH(C|x1) = 0.24 IH(C|x2) = 0.00
IG(C|x1) = 0.07 IG(C|x2) = 0.00
gH(C|x1) = 0.76 gH(C|x2) = 1.0
gG(C|x1) = 0.84 gG(C|x2) = 1.0

performed and the corresponding results reported, in order to observe whether
these possibilistic feature merit measures are actually capable to detect the
database features which controls the maximum information even on real-world
data.

3.1 The IRIS Database

The first experiment is performed on the IRIS database. This is a relatively
small database, containing data for three classes of iris plants. The first class is
supposed to be linearly separable and the last two classes non linearly separable.
The plants are characterized in terms of: 1) sepal length 2) sepal width 3) petal
length and 4) petal width.

Both possibilistic information gains are very high for the third and the fourth
input parameter, and almost zero for the first two input features (Tab. 3). In [8],
where a detailed description of the parameters adopted in the IRIS database is
produced, the sepal length and sepal width – parameter 1 and 2 – are reported to
be more or less the same for all the three output classes, i. e. uninformative. Thus
input parameter 1 and 2 should not contribute to the correct discrimination of
the output classes. On the opposite, the petal features – parameters 3 and 4 –
characterize very well the first class of iris (iris setosa) with respect to the other
two.

In this case, the proposed possibilistic feature merit measures produce a very
reliable description of the informative power of every input parameter. Hence
parameters 1 and 2 could be removed and the analysis performed solely on the
basis of parameters 3 and 4 without a relevant loss of information. The class
correlation, reported in [9], is also very high for parameters 3 and 4 and much
lower for the first two parameters. That confirms the results from the possibilistic
feature merit measures.

3.2 Arrhythmia Classification

A very suitable area for fuzzy – or more generally imprecise – decision systems
consists of medical applications. Medical reasoning is quite often a qualitative
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Table 3. Information gain g(C) of the iris features in the IRIS database

I(C) x1 x2 x3 x4

IH(C) = 1.44 gH(C) 0.10 0.06 0.82 0.81
IG(C) = 0.61 gG(C) 0.10 0.06 0.84 0.79
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Fig. 2. The ECG waveshape.

and approximative process, so that the definition of precise diagnostic classes
with crisp membership functions can sometimes lead to inappropriate conclu-
sions. One of the most investigated fields in medical reasoning is the automatic
analysis of the electrocardiogram (ECG), and inside that the detection of ar-
rhythmic heart beats.

Some cells (the sino-atrial node) in the upper chambers (the atria) of the car-
diac muscle (the myocardium) spontaneously and periodically change their elec-
trical polarization, which progressively extends to the whole myocardium. This
periodic and progressive electric depolarization of the myocardium is recorded
as small potential differences between two different locations of the human body
or with respect to a reference electrode. An almost periodic signal, the ECG,
that describes the electrical activity of the myocardium in time, is the result.
Each time period consists of a basic waveshape, whose waves are marked with
the alphabet letters P, Q, R, S, T, and U (Fig. 2). The P wave describes the de-
polarization process of the two upper myocardium chambers, the atria; the QRS
complex all together the depolarization of the two lower myocardium cham-
bers, the ventricula; and the T wave the repolarization process at the end of
each cycle. The U wave is often absent from the beat waveshape and, however,
its origin is controversial. The heart contraction follows the myocardium depo-
larization phase. Anomalies in the PQRST waveshape are often connected to
misconductions of the electrical impulse on the myocardium.
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Table 4. Set of measures characterizing each beat waveshape.

RR RR interval (ms)

RRa average of the previous 10 RR intervals

QRSw QRS width (ms)

VR Iso-electric level (µV)

pA Positive amplitude of the QRS (µV)

nA Negative amplitude of the QRS (µV)

pQRS Positive area of the QRS (µV * ms)

nQRS Negative area of the QRS (µV * ms)

pT positive area of the T wave (µV * ms)

nT negative area of the T wave (µV * ms)

ST ST segment level (µV)

STsl slope of the ST segment (µV/ms)

P P exist (yes 0.5, no -0.5)

PR PR interval (ms)

A big family of cardiac electrical misfunctions consists of arrhythmic heart
beats, deriving from an anomalous (ectopic) origin of the depolarization wave-
front in the myocardium. If the depolarization does not originate in the sino-
atrial node, a different path is followed by the depolarizing wavefront and there-
fore a different waveshape appears in the ECG signal. Arrhythmia are believed
to occur randomly in time and the most common types have an anomalous
origin in the atria (SupraVentricular Premature Beats, SVPB) or in the ventric-
ula (Ventricular Premature Beats, VPB). With the development of automatic
systems for the detection of QRS complexes and the extraction of quantitative
measurements, large sets of data can be generated from hours of ECG signal. A
larger number of measures though does not guarantee better performances of the
upcoming classifier, if no significant new information is added. A pre-screening of
the most significant measures for the analysis has the double advantage of low-
ering the input dimension and of improving the classifier’s performance when
poor quality measures are discarded.

The MIT-BIH database [10] represents a standard in the evaluation of meth-
ods for the automatic classification of the ECG signal, because of the wide set
of examples of arrhythmic events provided. The MIT-BIH ECG records are two-
channel, 30 minutes long and sampled at 360 samples/s. Two records (200 and
233) from the MIT-BIH database are analyzed in this study, because of their
high number of arrhythmic beats. QRS complexes are detected and for each
beat waveshape a set of 14 measures [11] is extracted by using the first of the
two channels in the ECG record (Tab. 4). The first 2/3 of the beats of each
record are used as training set and the last 1/3 as test set. A two-class, normal
(N) vs. ventricular premature beats (VPB) is considered for record 200 and a
three-class problem (N, VPB, and SVPB) for record 233, in order to quantify
the discriminative power of the input features for both classification tasks.
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Table 5. Information gain for different ECG beat measures (record 200). The
amounts of correctly classified N and VPB and of uncertain beats are expressed
in %.

RR RRa QRSw VR pA nA pQRS nQRS pT nT ST STsl P PR N VPB unc.

gH .40 .00 .78 .09 .07 .00 .08 .04 .00 .61 .57 .01 .00 .00
99 97 1

gG .42 .01 .80 .11 .09 .01 .10 .05 .00 .63 .59 .02 .00 .00

gH .47 - .42 .14 .25 .25 .38 .21 - .15 .36 .17 - -
99 96 1

gG .53 - .44 .18 .25 .27 .43 .26 - .16 .38 .17 - -

gH .74 - .08 - .44 .42 .49 .28 - - .03 - - -
100 97 1

gG .81 - .09 - .48 .43 .55 .31 - - .04 - - -

gH .52 - - - .59 .78 .71 - - - - - - -
100 97 1

gG .56 - - - .60 .78 .74 - - - - - - -

gH - - - - .56 .38 .59 - - - - - - -
100 97 1

gG - - - - .57 .41 .61 - - - - - - -

gH - - - - .41 - .72 - - - - - - -
98 95 1

gG - - - - .45 - .76 - - - - - - -

gH - - - - .44 .55 - - - - - - - -
100 97 1

gG - - - - .46 .57 - - - - - - - -

gH - - - - - - .29 - - - - - - -
74 50 0

gG - - - - - - .33 - - - - - - -

gH - - .32 - - - - - - - - - - -
56 56 0

gG - - .38 - - - - - - - - - - -

gH .48 - - - - - - - - - - - - -
89 31 0

gG .52 - - - - - - - - - - - - -

gH - - - - .53 - - - - - - - - -
96 93 0

gG - - - - .57 - - - - - - - - -

gH - - - - - .60 - - - - - - - -
95 95 0

gG - - - - - .65 - - - - - - - -

At first all 14 measures are used for classification. The corresponding informa-
tion gains gH(C) and gG(C) are listed in table 5, together with the percentages
of correctly classified and uncertain beats on the test set, for record 200. Beats
are labeled as uncertain if they are not covered by any rules of the fuzzy model.
The percentage of uncertain beats (unc.) is defined with respect to the number
of beats in the whole test set. The parameter with highest information gain is
marked in bold. The ECG measures with smallest information gains are then
progressively removed from the classification process. A similar table can be
obtained for record 233.

Ventricular arrhythmia are mainly characterized by alterations in the QRS
complex and T wave rather than in the PR segment. VPBs usually present a
larger and higher QRS complex, and to a lower extent an alterated ST segment.
In table 5 some ECG measures produce from the very beginning no information
gain, such as the presence of the P wave (P), the average RR interval of the
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previous 10 beats (RRa), and the PR interval (PR) as it was to be expected.
Only 4-6 ECG features are characterized by a high information gain, that is are
relevant for the classification process. An almost constantly used feature is the
RR interval, that quantifies the prematurity of the beat and it is usually a sign
for general arrhythmia. Also the QRS width, the positive and negative amplitude
of the QRS complex and the corresponding areas, all parameters related to the
QRS complex shape, play an important role, individually or together, in the
classification procedure. If many input parameters are used, T wave features
provide helpful information for classification, but they loose importance if no
redundant input information is supplied. The low informative character of the
past RR intervals, through the low information gain of the RRa parameter,
confirms the unpredictability of VPBs. Individually, the positive and negative
amplitude of the QRS complex present the highest information gain, confirmed
by the highest performance on the test set, followed by the RR interval, the QRS
width, and the QRS positive area.

All the estimated discriminative powers in table 5 find positive confirmation
in clinical VPB diagnostics. The redundant or uninformative character of the
input features with lowest information gain is proven by the fact that their
removing does not affect the final performance on the test set, as long as at least
two of the most significant ECG measures are kept. Indeed the same performance
on the test set are observed both with the full input dimensionality and removing
the least significant ECG measures.

Record 233 presents a new class of premature beats with supraventricular
origin (SVPB) and a more homogeneous class of VPBs. Supraventricular ar-
rhythmia can be differentiated from normal beats mainly by means of the RR
interval and the PR segment, whenever the P wave can be reliably detected.
Consequently the analysis of record 233, with respect to the analysis of record
200, shows a high information gain also for the PR measure, besides the negative
amplitude and area of the QRS complex and the RR interval already used for
VPB classification. However, if considered individually, none of the ECG mea-
sures produces a high information gain and good performance on the test set for
all classes of beats. The PR interval shows to be useless if used alone for SVPB
classification, but it gains a high discrimination power if any other significant
ECG measure is added. The negative amplitude of the QRS complex and the
RR interval alone show to be still highly discriminative for N/VPB classification,
but helpless for SVPB recognition.

4 Conclusions

A methodology to estimate the discriminative power of input features based
on an underlying fuzzy model is presented. Because of the approximative na-
ture of fuzzy models, many algorithms exist to construct such models quickly
from example data. Using properties of fuzzy logic, it is easy and computation-
ally inexpensive to determine the possibilistic information gain associated with
each input feature. The algorithm capability is illustrated by using an artifi-
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cial example and the well-known IRIS data. The real-world feasibility was then
demonstrated on a medical application.

The defined information gain provides a description of the class discrim-
inability inside the adopted fuzzy model. This is related with classification per-
formances, only if the fuzzy model was built on a sufficiently general set of train-
ing examples. The proposed algorithm represents a computationally inexpensive
tool to reduce high-dimensional input spaces as well as to get insights about the
system through the fuzzy model. For example, it can be used to determine which
input features are exploited by fuzzy classifiers with better performance.

We believe that especially for large scale data sets in high dimensional feature
spaces, such quick approaches to gain first insights into the nature of the data will
become increasingly important to successfully find the underlying regularities.
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