
A Revised Version of CRYPTON

- CRYPTON V1.0 -

Chae Hoon Lim

Information & Communications Research Center, Future Systems, Inc.
372-2, Yang Jae-Dong, Seo Cho-Gu, Seoul, 137-130, Korea: chlim@future.co.kr

Abstract. The block cipher CRYPTON has been proposed as a can-
didate algorithm for the Advanced Encryption Standard (AES). To fix
some minor weakness in the key schedule and to remove some undesira-
ble properties in S-boxes, we made some changes to the AES proposal,
i.e., in the S-box construction and key scheduling. This paper presents
the revised version of CRYPTON and its preliminary analysis.

1 Motivations and Changes

The block cipher CRYPTON has been proposed as a candidate algorithm for the
AES [22]. Unfortunately, however, we couldn’t have enough time to refine our al-
gorithm at the time of submission. So, we later revised part of the AES proposal.
This paper describes this revision and analyzes its security and efficiency.

CRYPTON v1.0 is different from the AES proposal (v0.5) only in the S-box
construction and key scheduling. As we mentioned at the 1st AES candidate
conference, we already had a plan to revise the CRYPTON key schedule. The
previous key schedule was in fact expected from the begining to have some
minor weaknesses due to its too simple round key computations (actually a
slight weakness was found by Serge Vaudenay etc. at ENS (posted at NIST’s
AES forum) and by Johan Borst [4]). We thus made some enhancements to
the original key schedule, while trying to keep changes minimal. The new key
schedule now makes use of bit and word rotations, as well as byte rotations.
We also used distinct round constants for each round key. This way we tried to
make each byte of expanded keys used in different locations (and different bit
positions within a byte) of 4 × 4 byte array in different rounds. The new key
schedule still runs much faster than one-block encryption.

In v0.5 we used two 8×8 S-boxes constructed from 4-bit permutations using
a 3-round Feistel cipher. Such S-boxes, however, turned out to have too many
low-weight, high-probability characteristics that may cause weak diffusion by
the linear transformation following the S-box transformation. For example, the
S-boxes used in V0.5 have about 300 characteristics with probability 2−5 and
160 linear approximations with probability 2−4. Furthermore, some of such I/O
pairs turned out to have minimal diffusion under linear transformations. Though
we could achieve reasonably high security bounds even with such S-boxes, we
wanted to make CRYPTON more stronger for long-term security by allowing a
large safety margin. We thus decided to strengthen the S-box in this opportunity.

L. Knudsen (Ed.): FSE’99, LNCS 1636, pp. 31–45, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

32 C.H. Lim

Experiments show that most Feistel-type constructions seem to generate S-
boxes with too many high-probability characteristics, so we decided to use other
construction methods. We first started with a Feistel structure involving three or
four 4-bit permutations and repeated modifications and testings of the structure
to get better 8-bit S-boxes. In the end we arrived at the structure of a SP
network described in Sect.3.2. The resulting S-boxes are much stronger against
differential and linear cryptanalysis when combined with linear transformations
used. We decided to use four variants of one S-box, instead of independent four S-
boxes, to allow greater flexibility in memory requirements (e.g., for cost-effective
implementations on smart cards).

Finally, we would like to stress that the above modifications do not require
any substantial change in existing analysis on the security and efficiency. The
security evaluation of the new version can be done only by replacing old figu-
res replated to S-box characteristics with new ones and there is no change in
the overall structure of key scheduling. The performance figures in software im-
plementations remain almost the same. The hardware complexity is a little bit
increased due to the increased complexity for logic implementation of S-boxes.

Throughout this paper we will use the following symbols and notation:

– A 4 × 4 byte array A is represented by

A = (A[3], A[2], A[1], A[0])t =




A[0]
A[1]
A[2]
A[3]


 =




a03 a02 a01 a00

a13 a12 a11 a10

a23 a22 a21 a20

a33 a32 a31 a30


 .

– X�n: left rotation of X by n-bit positions.
– X�bn: left rotation of each byte in a 32-bit number X by n-bit positions.
– f ◦ g: composition of functions f and g, i.e., (f ◦ g)(x) = f(g(x)).
– ∧,⊕: bit-wise logical operations for AND and XOR, respectively.

2 Algorithm Specifications

CRYPTON processes a data block of 16 bytes by representing it into a 4×4 byte
array as in SQUARE [6]. The round transformation of CRYPTON consists of
four parallelizable steps: byte-wise substitutions, column-wise bit permutation,
column-to-row transposition, and then key addition. The encryption process in-
volves 12 repetitions of (essentially) the same round transformation. The decryp-
tion process can be made identical to the encryption process with a different key
schedule. This section presents a detailed description of CRYPTON v1.0.

2.1 Basic Building Blocks

Nonlinear Substitution γ The nonlinear transformation γ consists of byte-
wise substitutions on a 4×4 byte array by using four 8×8 S-boxes, Si (0 ≤ i ≤ 3),
such that S2 = S−1

0 and S3 = S−1
1 (see Sect.3.2 for details). Two different S-box

A Revised Version of Crypton 33

arrangements are used in successive rounds alternately; γo in odd rounds and γe

in even rounds. They are defined as

B = γo(A) ⇔ bij = Si+j mod 4(aij),
B = γe(A) ⇔ bij = Si+j+2 mod 4(aij).

Observe that the four S-boxes are arranged so that γ−1
o = γe and γ−1

e = γo. This
property will be used to derive identical processes for encryption and decryption.

Bit Permutation π The bit permutation π bit-wise mixes each byte column
of 4 × 4 byte array using four masking bytes mi’s given by

m0 = 0xfc, m1 = 0xf3, m2 = 0xcf, m3 = 0x3f.

We first define four column permutations πi’s (0 ≤ i ≤ 3) as

[b3, b2, b1, b0]t = πi([a3, a2, a1, a0]t) ⇔ bj = ⊕3
k=0(mi+j+k mod 4 ∧ ak),

The bj can be expressed alternatively using bit extraction and xoring as

bj = ⊕3
k=0(mi+j+k mod 4 ∧ ak) ⊕ a,

where mk denotes bit-wise complement of mk and a = ⊕3
k=0ak.

As in γ, we use two slightly different versions of bit permutation to make
encryption and decryption processes identical: πo in odd rounds and πe in even
rounds. Let Ai be the i-th byte column of a 4 × 4 byte array A, i.e., Ai =
(a3i, a2i, a1i, a0i)t. Then the bit permutations πo and πe are defined as

πo(A) = (π3(A3), π2(A2), π1(A1), π0(A0)),
πe(A) = (π1(A3), π0(A2), π3(A1), π2(A0)).

Note that π−1
o = πo and π−1

e = πe and that if π0([d, c, b, a]t) = [h, g, f, e]t, then

π1([d, c, b, a]t) = [e, h, g, f]t, π2([d, c, b, a]t) = [f, e, h, g]t, π3([d, c, b, a]t) = [g, f, e, h]t.

This property will be used to derive an efficient decryption key schedule from
the encryption key schedule (see Sect.2.3).

Byte Transposition τ It simply moves the byte at the (i, j)-th position to the
(j, i)-th position, i.e., B = τ(A) ⇔ bij = aji. Note that τ−1 = τ .

Key Xoring σ For a round key K = (K[3], K[2], K[1], K[0])t, B = σK(A) is
defined by B[i] = A[i] ⊕ K[i] for 0 ≤ i ≤ 3. Obviously, σ−1

K = σK .

Round Transformation ρ One round of CRYPTON consists of applying γ, π, τ
and σ in sequence to the 4 × 4 data array. More specifically, the odd and even
round functions are defined (for round key K) by

ρoK = σK ◦ τ ◦ πo ◦ γo for odd rounds,
ρeK = σK ◦ τ ◦ πe ◦ γe for even rounds.

34 C.H. Lim

2.2 Encryption and Decryption

Let Ki
e be the i-th encryption round key consisting of 4 words, derived from a

user-supplied key K using the encryption key schedule. The encryption trans-
formation EK of 12-round CRYPTON under key K consists of an initial key
addition and 6 times repetitions of ρo and ρe and then a final output transfor-
mation. More specifically, EK can be described as

EK = φe ◦ ρeK12
e

◦ ρoK11
e

◦ · · · ◦ ρeK2
e

◦ ρoK1
e

◦ σK0
e
, (1)

where φe is an output transformation to make encryption and decryption pro-
cesses identical and is given by φe = τ ◦πe ◦τ. Similarly we define φo = τ ◦πo ◦τ .

The corresponding decryption transformation DK can be shown to have the
same form as EK , except for using suitably transformed round keys:

DK = φe ◦ ρeK12
d

◦ ρoK11
d

◦ · · · ◦ ρeK2
d

◦ ρoK1
d

◦ σK0
d
, (2)

where the decryption round keys are defined by

Kr−i
d =

{
φe(Ki

e) for i = 0, 2, 4, · · ·,
φo(Ki

e) for i = 1, 3, 5, · · ·. (3)

This shows that decryption can be performed by the same function as encryption
with a different key schedule.

Notice that

φe ◦ σKi
e

= σφe(Ki
e) ◦ φe = σKr−i

d
◦ φe for i = 0, 2, 4, · · ·,

φo ◦ σKi
e

= σφo(Ki
e) ◦ φ0 = σKr−i

d
◦ φo for i = 1, 3, 5, · · ·.

Using this property, we can incorporate the output transformation φe into the
final round as φe ◦ ρeK12

e
= σK0

d
◦ τ ◦ γe.

2.3 Key Scheduling

CRYPTON requires total 4 × 13 = 52 round keys each of which is 32 bits long.
These round keys are generated from a user key of 8k (k = 0, 1, · · · , 32) bits in
two steps: first nonlinear-transform the user key into 8 expanded keys and then
generate the required number of round keys from these expanded keys using
simple operations. This two-step generation of round keys is to allow efficient
on-the-fly round key computation in the case where storage requirements do not
allow to store the whole round keys (e.g., implementation in a portable device
with restricted resources). It also facilitates hardware implementations.

Generating Expanded Keys Let K = k31 · · · k1k0 be a 256-bit user key.
We first split K into U and V such that U [i] = k8i+6k8i+4k8i+2k8i and V [i] =
k8i+7k8i+5k8i+3k8i+1 for i = 0, 1, 2, 3. Then we compute the 8 expanded keys
Ee[i] (0 ≤ i ≤ 7) using round transformations with all-zero key as

U ′ = ρo(U), V ′ = ρe(V),
Ee[i] = U ′[i] ⊕ T1, Ee[i + 4] = V ′[i] ⊕ T0,

where T0 = ⊕3
i=0U

′[i] and T1 = ⊕3
i=0V

′[i].

A Revised Version of Crypton 35

Generating encryption round keys The following 13 round-constants will
be used for encryption key schedule:

Ce[0] = 0xa54ff53a, Ce[i] = Ce[i− 1] + 0x3c6ef372 mod 232 for i = 1, 2, · · · , 12.

In addition, we also use the following 4 masking constants to generate distinct
constants for each round key from a given round constant:

MC0 = 0xacacacac, MCi = MC
�b1
i−1 for i = 1, 2, 3.

1. compute the round keys for the first 2 rounds as

Ke[i] ← Ee[i]⊕ Ce[0]⊕MCi,

Ke[i + 4]←Ee[i + 4]⊕ Ce[1]⊕MCi for 0 ≤ i ≤ 3.

2. for rounds r = 2, 3, · · · , 12, repeat the following two steps alternately:
2-1. even rounds:

{Ee[3], Ee[2], Ee[1], Ee[0]} ← {Ee[0]�b6, Ee[3]�b6, Ee[2]�16, Ee[1]�24},
Ke[4r + i] ← Ee[i]⊕ Ce[r]⊕MCi for 0 ≤ i ≤ 3.

2-2. odd rounds:

{Ee[7], Ee[6], Ee[5], Ee[4]} ← {Ee[6]�16, Ee[5]�8, Ee[4]�b2, Ee[7]�b2},
Ke[4r + i] ← Ee[i + 4]⊕ Ce[r]⊕MCi for 0 ≤ i ≤ 3.

Generating decryption round keys For efficient decryption key schedule,
first observe that φo = τ ◦ πo ◦ τ and φe = τ ◦ πe ◦ τ can be rewritten as

φo(A) = (φ3(A[3]), φ2(A[2]), φ1(A[1]), φ0(A[0]))t,

φe(A) = (φ1(A[3]), φ0(A[2]), φ3(A[1]), φ2(A[0]))t.

Here φi is actually the same as πi except that 4 input bytes are now arranged
in a row vector (see Sect.2.1.2). Also note the shift and linear properties of φi

φi(X�8k) = φi(X)�32−8k for k = 1, 2, 3,

φi(X) = φj(X)�8 for j = i + 1 mod 4,

φi(X�b2k) = (φi(X)�b2k)�8k for k = 1, 2, 3,

φi(A[j]⊕ C) = φi(A[j])⊕ φi(C).

In particular, φi(C) = C if C consists of 4 identical bytes. Using these properties,
we can design a decryption key schedule similar to and almost as efficient as the
encryption key schedule as follows (Decryption round constants Cd[i]’s are given
by Cd[i] = φ2(Ce[12 − i]) for even i’s and Cd[i] = φ0(Ce[12 − i]) for odd i’s.):

1. compute the expanded keys and round constants for decryption as follows:

36 C.H. Lim

2. compute the first 8 round keys as

Kd[i] ← Ed[i]⊕ Cd[0]�32−8i ⊕MCi,

Kd[i + 4] ← Ed[i + 4]⊕ Cd[1]�32−8i ⊕MCi for 0 ≤ i ≤ 3.

3. for rounds r = 2, 3, · · · , 12, repeat the following two steps alternately:
3-1. even rounds:

{Ed[3], Ed[2], Ed[1], Ed[0]} ← {Ed[2]�b2, Ed[1]�8, Ed[0]�16, Ed[3]�b2},
Kd[4r + i] ← Ed[i]⊕ Cd[r]�32−8i ⊕MCi for 0 ≤ i ≤ 3.

3-2. odd rounds:

{Ed[7], Ed[6], Ed[5], Ed[4]} ← {Ed[4]�b6, Ed[7]�24, Ed[6]�16, Ed[5]�b6},
Kd[4r + i] ← Ed[i + 4]⊕ Cd[r]�32−8i ⊕MCi for 0 ≤ i ≤ 3.

3 Security Analysis

3.1 Diffusion Property of Linear Transformations

Due to memory requirements, small size S-boxes are commonly used in most
block cipher designs and thus effective diffusion of S-box outputs by linear trans-
formations plays an important role for resistance against various attacks such as
differential and linear cryptanalysis (DC and LC for short) [3,23]

From Sect.2.1.2, we can see that it suffices to consider any one component
transformation πi of π to examine the diffusion property of π, since π acts on
each byte column independently. It is also easy to see that any column vector
with n (n < 4) nonzero bytes is transformed by πi into a column vector with at
least 4−n nonzero bytes (we call this number 4 the diffusion order of πi). This is
due to the operation of exclusive-or sum in π. More important is that the number
of such input vectors giving minimal diffusion is very limited. This is due to the
masked bit permutation. Table 1 shows the distribution of diffusion orders by πi

over all 32-bit numbers. We can see that there are only 204 values achieving the
minimum diffusion order 4 and about 99.96 % of 32-bit numbers have diffusion
order 7 or 8. This shows the effectiveness of diffusion by our combined linear
transformation τ ◦ π in successive rounds.

diffusion order 4 5 6 7 8
no. elements 204 13464 1793364 130589784 4162570479

ratio 4.75× 10−8 3.13× 10−6 4.18× 10−4 3.04× 10−2 96.92× 10−2

Table 1. Distribution of diffusion orders under πi

Let us examine in more detail the set of 32-bit numbers giving minimal
diffusion. For this, we define two sets of byte values, Ωx and Ωy, as

Ωx = {0x01, 0x02, 0x03, 0x04, 0x08, 0x0c, 0x10, 0x20, 0x30, 0x40, 0x80, 0xc0},

Ωy = {0x11, 0x12, 0x13, 0x21, 0x22, 0x23, 0x31, 0x32, 0x33, 0x44, 0x48, 0x4c,

0x84, 0x88, 0x8c, 0xc4, 0xc8, 0xcc} ∪ Ωx.

A Revised Version of Crypton 37

Let Ij be a set of input vectors with j nonzero bytes which are transformed by
πi into output vectors with 4 − j nonzero bytes. Then all possible 32-bit values
with minimum diffusion can be obtained as: for each x in Ωx and y in Ωy,

I1 = {(0, 0, 0, x)t, (0, 0, x, 0)t, (0, x, 0, 0)t, (x, 0, 0, 0)t},

I2 = {(0, 0, x, x)t, (0, x, x, 0)t, (x, x, 0, 0)t, (x, 0, 0, x)t, (0, y, 0, y)t, (y, 0, y, 0)t},

I3 = {(0, x, x, x)t, (x, 0, x, x)t, (x, x, 0, x)t, (x, x, x, 0)t}.

Therefore, we can see that there are only 204 vectors with minimum diffusion:
48 from πi(I1) = I3, 108 from πi(I2) = I2 and 48 from πi(I3) = I1. Observe that
the nonzero bytes in each input vector should have the same value to achieve
minimum diffusion. Also note that the 18 values in Ωy − Ωx can only occur for
inputs with two separated nonzero bytes (the last two cases in I2).

Now let us examine the diffusion effect of τ ◦ π through consecutive rounds.
This analysis can be done by assuming that in each round the S-box output
can take any desired value, irrespective of the input value. This assumption is
to maximally take into account the probabilistic nature of S-box transformation
without details of the S-box characteristics. Since it suffices to consider worst-
case propagations, we only examine inputs with 1, 2, or 3 nonzero bytes in any
one column vector of a 4 × 4 byte array, say the first byte column. The result
is shown in Table 2, where we only showed the nonzero column vector in the
starting 4 × 4 byte array. The sum of the number of nonzero bytes throughout
the evolution is of great importance to ensure resistance against differential and
linear cryptanalysis. Table 2 shows that the number of nonzero bytes per round
is repeated with period 4 and their sum up to round 8 is at least 32.

starting nonzero vector \ round 1 2 3 4 5 6 7 8
I1j (0 ≤ j ≤ 3) 1 3 9 3 1 3 9 3
I2j (0 ≤ j ≤ 5) 2 2 6 6 2 2 6 6
I3j (0 ≤ j ≤ 3) 3 1 3 9 3 1 3 9

Table 2. Minimum possible no. of active bytes (without considering S-box char.)

3.2 S-Boxes Construction and Their Property

The S-box for a block cipher should be chosen to have two important requi-
rements: differential uniformity and nonlinearity. Combined with the diffusion
effect of linear transformations used, they directly determine the security level
of the block cipher against DC and LC.

The maximum differential and linear approximation probabilities for an n×n
S-box S (δS and λS for short) can be defined as follows. Let X and Y be a set
of possible 2n inputs/outputs of S, respectively. Then δS and λS are defined by

δS
def= max

∆x 6=0,∆y

#{x ∈ X|S(x) ⊕ S(x ⊕ ∆x) = ∆y}
2n

, (4)

λS
def= max

Γx,Γy 6=0

(|#{x ∈ X|x • Γx = S(x) • Γy} − 2n−1|
2n−1

)2

, (5)

38 C.H. Lim

where a • b denotes the parity of bit-wise product of a and b.
The nonlinear transformation adopted in CRYPTON is byte-wise substituti-

ons using four 8 × 8 S-boxes, Si (i = 0, 1, 2, 3). We first constructed an 8 × 8
involution S-box S from two 4-bit permutations (P-boxes, for short), P0 and
P1, using a SP network, as shown in Fig.1. Then the actual four S-boxes were
derived from S as follows: for each x ∈ [0, 256),

S0(x) = S(x)�1, S1(x) = S(x)�3, S2(x) = S(x�7), S3(x) = S(x�5).

It is easy to see that these S-boxes satisfy inverse relationships such that
S−1

0 = S2 and S−1
1 = S3. We decided to use four variants of S, rather than

just one involution S-box or four independent S-boxes, because this will make
iterative characteristics harder to occur while reducing the storage required in
some limited computing environments (e.g., low-cost smart cards).

x7 x6 x5 x4 x3 x2 x1 x0 Input x
↓ ↓
P1 P0 4-bit P-boxes

z7 z6 z5 z4 z3 z2 z1 z0
↓ ↓

z7 z6 z0 z1 z3 z2 z4 z5
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
z4 z0 z3 z7 z5 z1 z2 z6 Linear involution
⊕ ⊕ ⊕ ⊕
z2 z5 z7 z0
w3 w2 w1 w0 w7 w6 w5 w4

↓ ↓
P−1

0 P−1
1 Inverse P-boxes

↓ ↓
y3 y2 y1 y0 y7 y6 y5 y4 Output y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P0 15 14 10 1 11 5 8 13 9 3 2 7 0 6 4 12
P1 11 10 13 7 8 14 0 5 15 6 3 4 1 9 2 12

Fig.1 The selected 8× 8 involution S-box S

The involution S-box S was searched for, over some limited space of good
4-bit P-boxes and linear involutions, in such a way that it has best possible
differential and linear characteristics. Moreover, among such a set of candidate
involution S-boxes, we selected the final S-box S considering the following two
additional requirements:

1. The high-probability I/O difference pairs (selection patterns, resp.) in S
should have as high Hamming weights as possible.

A Revised Version of Crypton 39

2. The number of high-probability difference pairs (selection patterns, resp.) in
the resulting 8×8 S-boxes Si’s should be as small as possible when the input
is restricted to the minimal diffusion set Ωy.

These requirements are to ensure that high-probability differences/selection pat-
terns should be more rapidly diffused by linear transformations and that it should
be more difficult to form a chain of high-probability S-box characteristics/linear
approximations through consecutive rounds.

Table 3 shows their statistics on the distribution of input-output diffe-
rence/linear approximation pairs, where the entry values are computed by the
numerator of equations (4) and (5).

D entry value 0 2 4 6 8 10
C no of entries 39584 20158 4976 749 62 7
L entry value 0 4 8 12 16 20 24 28 32
C no of entries 13927 22058 15948 8460 3731 1094 276 36 6

Table 3. Distribution of difference/linear approx. pairs for Si

From the table, we can see that for each i,

pd
def= δSi

=
10
256

= 2−4.68, pl
def= λSi

= (
32
128

)2 = 2−4,

and that there are only 7 difference pairs achieving the best characteristic proba-
bility pd (6 selection patterns achieving the best linear approximation probability
pl). As we aimed at the S-box selection process, these high-probability characte-
ristics have fairly heavy Hamming weights. E.g., for the characteristics with top
two high probabilities (69 pairs for DC and 42 pairs for LC), the sum of input
and output Hamming weights are at least 4 and larger than 8 on average.

DC(6) LC(24)
S0 (11, c0) (22, 8c) (32, cc) (88, 11) (88, 11)
S1 (11, 3) (22, 32) (32, 33) (88, 44) (88, 44)
S2 (c0, 11) (11, 88) (8c, 22) (cc, 32) (11, 88)
S3 (3, 11) (32, 22) (33, 32) (44, 88) (44, 88)

Table 4. The most probable characteristics over the restricted set Ωy

More importantly, if the input is restricted to the minimal diffusion set Ωy,
the maximum entry values are at most 6 and 24 for differential and linear charac-
teristics, respectively. There are only 4 such difference pairs and 1 such selection
pattern in each S-box, as shown in Table 4. Note that even the pairs in the table
belong to the more restricted set Ωy − Ωx. Since they are more important for
worst-case analysis of DC and LC, we define these probabilities as

p′
d

def= δ
Ωy

Si
=

6
256

= 2−5.42, p′
l

def= λ
Ωy

Si
= (

24
128

)2 = 2−4.83.

40 C.H. Lim

3.3 Differential Cryptanalysis

Let us first evaluate the best r-round characteristic probability for CRYPTON.
In the following we only consider characteristics up to 8 rounds since that will
be sufficient to show the resistance of CRYPTON to differential cryptanalysis.

First note that the probability of any characteristic in CRYPTON can be
completely determined by the number of active S-boxes and their char. probabi-
lities (e.g., see [10]). Since the number of active S-boxes involved in any 8-round
characteristic is at least 32, we can obtain the most rough upper bound for the
best 8-round char. probability as pC8 = p32

d = 2−149.7 under the assumption of
independent and uniform distribution for plaintexts and round keys, where we
assumed that all the S-boxes involved have the best char. probability pd.

However, as can be seen from Table 4, the minimum number of active S-
boxes shown in Table 2 can not be achieved even with S-box characteristics
with probability p′

d. Moreover, if we allow intermediate S-box output differences
with larger diffusion orders, then the number of active S-boxes up to round 8
will grow much larger than the bound 32. Considering the rapid diffusion by
linear transformations, we can reasonably assume that a characteristic involving
a smaller number of active S-boxes with smaller S-box char. probabilities should
give better overall probability than a characteristic involving a larger number of
active S-boxes with larger S-box char. probabilities. Therefore, we can obtain a
tighter bound for the 8-round char. probability as pC8 < (p′

d)
32 = 2−173.3. The

actual probability will be much lower than this bound, but we do not proceed
any more since this bound is lower enough to show the strong resistance of
CRYPTON against DC based on the best characteristic.

Given a pair of input and output differences, there may be a relatively large
number of characteristics starting with the input difference and ending with the
output difference. It is not easy to estimate the number of such characteristics
that can reside in a differential. However, the estimated 8-round char. proba-
bility, together with a rough analysis solely based on the diffusion property of
linear transformations, shows that no 8-round differential can have probability
significantly larger than 2−128. Therefore, we believe that CRYPTON with 9 or
more rounds is far secure against the basic differential attack.

3.4 Linear Cryptanalysis

An r-round linear approximation involves a number of S-box linear approximati-
ons and, as in differential cryptanalysis, the number of such S-boxes (i.e., active
S-boxes) determines the complexity of linear cryptanalysis. Much the same way
as DC, we can obtain a rough bound for the best 8-round linear approximation
probability pLr

as pLr
< (p′

l)
32 = 2−154.6. Again this value is a very loose upper

bound. Actually there will be no linear approximation achieving this probabi-
lity, considering the linear characteristic of S-boxes and the linear transformation
involved.

As in the differential attack, we may use multiple linear approximations to
improve the basic linear attack [17,18]. Suppose that one can derive N linear

A Revised Version of Crypton 41

approximations involving the same key bits with the same probability. Then
the complexity of a linear attack can be reduced by a factor of N , compared
to a linear attack based on a single linear approximation [17]. However, a large
number of linear approximations involving the same key bits are unlikely to be
found in most ciphers, in particular in CRYPTON. Multiple linear approximati-
ons involving different key bits may be used to derive the different key bits in the
different linear approximations simultaneously with almost the same complexity
[18]. However, this will be of little help to improve the basic linear attack, since
we already have a linear approximation probability far beyond any practical
attack. Therefore, we believe that there will be no linear attack on CRYPTON
with 9 or more rounds with a complexity lower than 2128.

3.5 Security against Other Possible Attacks

There are some variants to the basic differential attack discussed above. Knud-
sen introduced the idea of a truncated differential [15], i.e., a differential that
predicts only part of the difference (not the entire value of difference), and de-
monstrated that this variant may be more effective against some ciphers than the
basic differential attack and may be independent of the S-boxes used [16]. Due
to the fairly uniform diffusion by bit-wise permutations, we believe that trun-
cated differentials will not be much useful in CRYPTON compared to ordinary
differentials.

The higher order differential attack was first considered by Lai [20] and furt-
her investigated in [15,12]. Let d be the poly. degree of (r −1)-round output bits
expressed as polynomials of plaintext bits. Then the higher order DC can find
some key bits of the last round for an r-round cipher using about 2d+1 chosen
plaintexts [12]. Obviously the success of this attack depends on the nonlinear
order of S-box outputs. Since CRYPTON uses S-boxes with nonlinear order 6,
the poly. degree of output bits after 3 rounds increases to 63 � 128. Therefore,
the higher order DC on CRYPTON will be completely infeasible after 4 rounds.

There also exist some algebraic attacks using polynomial relations between
ciphertexts and plaintexts. The interpolation attack [12] proposed by Jakobsen
and Knudsen is applicable if the number of coefficients in the polynomial expres-
sion of the ciphertext is less than the size of ciphertext space. Its probabilistic
variant allows to use some probabilistic non-linear relations with increased com-
plexity [11]. The S-boxes used in CRYPTON do not allow any simple algebraic
description and the bit permutation π in each round further complicates alge-
braic relations between S-box outputs. We thus believe that this kind of algebraic
attacks cannot be applied to CRYPTON.

Another notable attack is the differential attack based on impossible differen-
tials recently introduced by Biham et al. [1,2]. It seems not easy to systematically
find some impossible events in block ciphers based on the SP network. Thus the
applicability of this attack to CRYPTON should be further investigated in the fu-
ture. Other variants of differential attacks, such as the differential-linear attack
[9] and the boomerang attack (differential-differential style attack) [24], don’t
appear to better work on CRYPTON than the basic differential attack.

42 C.H. Lim

There are also several variants or generalizations of linear cryptanalysis.
These include linear cryptanalysis using non-linear approximations [19], gene-
ralized linear cryptanalysis using I/O sums [7], and partitioning cryptanalysis
[8], etc. We have not checked in detail the effectiveness of these attacks against
CRYPTON. However, our observation on the diffusion property of π shows that
any kind of I/O relations involving more than two bits in S-boxes should rapidly
increase the number of active S-boxes involved in the overall I/O relations. So,
we believe that there will be little chance of these attacks substantially improving
the basic linear attack.

Finally, we note that there exists a specialized attack to SQUARE-like ci-
phers, the so-call dedicated SQUARE attack [6], which can also be applied to a
reduced variant of CRYPTON (see [5]). However, this attack only uses the balan-
cedness of XOR sum of intermediate round outputs for a set of different inputs,
so its applicability is limited to at most a 6-round version of CRYPTON.

3.6 Key Schedule Cryptanalysis

Key schedule cryptanalysis is another important category of attacks on block
ciphers. Typical weaknesses exploited in key schedule cryptanalysis include weak
keys or semi-weak keys, equivalent keys, related keys and simple relations such
as the complemetation property existing in DES (for details, see e.g. [13,14]).
These weaknesses can be exploited to speed up an exhaustive key search or to
mount related key attacks. Though most of these attacks on key schedules are
not practical in normal use, they may be a serious flaw in certain circumstances
(e.g., when a block cipher is used as a building block for hash functions).

The key schedule of CRYPTON is designed with the above known weaknesses
in mind. First remember the two step generation of round keys in CRYPTON:
First, a user key of 256 bits or less is transformed into 8 expanded keys via
invertible nonlinear transformations. Then, the first 4 expanded keys are used
to generate round keys in even rounds and the remaining 4 in odd rounds. In
each round, the expanded keys are updated by a word rotation and bit or byte
rotations and then xored with distinct constants to produce round keys.

The first step of the key schedule shows that no different user keys can
produce the same expanded keys and that there is little possibility of simple
relations between different user keys being preserved in expanded keys. Thus we
believe that there are no equivalent keys or simple relations in the CRYPTON
key schedule. It is also very unlikely that there exist related keys that can be
used to mount related-key differential attacks or related-key slide attacks, since a
nonlinearly transformed user key is applied 6 or 7 times throughout encryption,
each time being updated by rotations and constant additions.

Weak keys or semi-weak keys, if any, are usually due to the symmetry in
encryption and key scheduling processes. This symmetry can be destroyed most
easily by using distinct round constants in the key schedule. In CRYPTON we
used different rotation amounts and round constants for each round key. So, we
also believe that no such keys exist in CRYPTON.

A Revised Version of Crypton 43

4 Implementation and Efficiency

The overall structure of CRYPTON allows a very high degree of parallelisms.
This will result in high efficiency and flexibility in both software and hardware
implementations.

The round transformation of CRYPTON can be efficiently implemented on
a 32-bit microprocessor using table lookups, if we use 4 Kbytes of storage in
addition. The idea is to precompute and store 4 tables of 256 words as follows:

SSi[j] = ⊕3
k=0(Si[j] ∧ mi+k mod 4)�8k for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 255.

We can then implement the odd round function B = ρoK(A) by

B[j] = ⊕3
i=0SSi+j mod 4[aij] ⊕ K[j] for 0 ≤ j ≤ 3.

Similarly, the even round function can be implemented by B = ρeK(A) =
ρoK((A[1], A[0], A[3], A[2])t).

We have implemented CRYPTON in C (with in-line assembly in the case
of Pentium Pro) and measured its speed on 200 MHz Pentium Pro running
Windows 95 (with 32 Mbytes of RAM) and on 167 MHz UltraSparc running
Solaris 2.5. The result is shown in Table 5. Our optimized C code runs quite
fast, giving an encryption rate of about 6.7 Mbytes/sec on Pentium Pro and
about 4.4 Mbytes/sec on UltraSparc. The partial assembly code on Pentium
Pro can encrypt/decrypt about 8.0 Mbytes per second, running about 20 %
faster than the optimized C code. We expect that a fully optimized assembly
implementation will run a little bit faster.

Language\Clocks Key setup (enc/dec) Encryption
In-line Asm (PP) N/A 381
MSVC 5.0 (PP) 327 / 397 452
GNU C (US) 496 / 564 575

Table 5. Speed of CRYPTON on Pentium Pro and UltraSparc (for 128-bit keys)

The key setup time of CRYPTON is different for encryption and decryption.
Decryption key setup requires a little more computation due to the need of
transformation of expanded keys. Our encryption key schedule is very fast, taking
much less time than one-block encryption (though the code for key scheduling
was not fully optimized). As a result, CRYPTON will be very efficient for use as
a building block for hash functions or in the case of encrypting/decrypting only
a few blocks of data (e.g., MACs for entity authentication). Note that all the
timings remain almost the same for different sizes of user keys.

CRYPTON can be efficiently implemented on other platforms as well. For
smart card implementations, we can only store 256 bytes of the involution S-box
S and compute each entry of Si’s using just one rotation. The RAM requirement
is also very small, just 52 bytes in total (20 bytes for data variables and 32 bytes
for a user key). So we can expect that CRYPTON will run quite fast on low-cost

44 C.H. Lim

smart cards, since all computations can be efficiently implemented only using
byte operations. Also, CRYPTON will be ideal to be implemented on DSPs which
have multiple execution units due to its high parallelism.

optimized in delay (nsec) cycles Mbits/sec total (cell) area
Area 18.97 7 900 51527 (18323)
Time 10.24 7 1660 74021 (28180)

Table 6. Estimated speed of CRYPTON in gate array impl.(from Synopsys)

Hardware efficiency is one of design objectives of CRYPTON. To estimate the
speed in hardware, we carried out some simulations with Synonsys using a com-
mercial 0.35 micron gate array library. The result is shown in Table 6. This table
shows that we can easily achieve a Giga bits/sec in hardware only using a small
amount of chip area.

5 Conclusion

We described CRYPTON version 1.0, an enhanced version of our AES proposal,
and analyzed its security and efficiency. CRYPTON was designed by considering
efficiency in various implementation environments. Its symmetry in encryption
and decryption greatly reduces the hardware complexity. The S-boxes and li-
near transformations are designed by considering efficient implementations in
hardware logic as well. The key scheduling algorithm runs very fast and allows
efficient implementations in hardware and under limited environments.

Our preliminary analysis shows that 12-round CRYPTON is far secure against
most known attacks. At present the best attack on CRYPTON appears to be
exhaustive key search. However, as usual, more extensive analysis should be
done before practical applications of a newly introduced cipher, so we strongly
encourage the reader to further investigate our new version of CRYPTON. We
would greatly appreciate any reports on its analysis.

Acknowledgement

The author is very grateful to those people who helped him during the develop-
ment of CRYPTON. Hyo Sun Hwang and Myung Hee Kang helped implementa-
tions in assembly and Java, and the hardware simulation was done by Eun Jong
Hong. He would also like to thank the anonymous refrees for their constructive
comments.

References

1. E.Biham, A.Biryukov and A.Shamir, Cryptanalysis of Skipjack reduced to 31 ro-
unds, In Advances in Cryptology-EUROCRYPT’99, Springer-Verlag, 1999.

A Revised Version of Crypton 45

2. E.Biham, A.Biryukov and A.Shamir, Miss in the middle attacks on IDEA, Khufu,
and Khafre, in this proceedings.

3. E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems,
Journal of Cryptology, v. 4, 1991, pp. 3-72.

4. J.Borst, Weak keys of CRYPTON, public comment submited to the NIST, 1998.
5. C.D’Halluin, G.Bijnens, V.Rijmen and B.Preenel, Attack on six rounds of CRYP-

TON, in this proceedings.
6. J.Daemen, L.Knudsen and V.Rijmen, The block cipher Square, In Fast Software

Encryption, LNCS 1267, Springer-Verlag, 1997, pp.149-171.
7. C.Harpes, G.Kramer and J.Massey, A generalization of linear cryptanalysis

and the applicability of Matsui’s piling-up lemma, In Advances in Cryptology-
EUROCRYPT’95, LNCS 921, Springer-Verlag, 1995, pp.24-38.

8. C.Harpes and J.Massey, Partitioning cryptanalysis, In Fast Software Encryption,
LNCS 1267, Springer-Verlag, 1997, pp.13-27.

9. M.Hellman and S.Langford, Differential-linear cryptanalysis, In Advances in
Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, 1994, pp.26-39.

10. H.M.Heys and S.E.Tavares, Substitution-permutation networks resistant to diffe-
rential and linear cryptanalysis, J. Cryptology, 9(1), 1996, pp.1-19.

11. T.Jakobsen, Cryptanalysis of block ciphers with probabilistic non-linear relations of
low-degree, In Advances in Cryptology-CRYPTO’98, LNCS 1462, Springer-Verlag,
1998, pp.212-222.

12. T.Jakobsen and L.R.Knudsen, The interpolation attack on block ciphers, In Fast
Software Encryption, LNCS 1267, Springer-Verlag, 1997, pp.28-40.

13. J.Kelsey, B.Schneier and D.Wagner, Key-schedule cryptanalysis of IDEA, DES,
GOST, SAFER, and triple-DES, In Advances in Cryptology-CRYPTO’96, LNCS
1109, Springer-Verlag, 1996, pp.237-252.

14. J.Kelsey, B.Schneier and D.Wagner, Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA, In Information and Communica-
tions Security, LNCS 1334, Springer-Verlag, 1997, pp.233-246.

15. L.R.Knudsen, Truncated and higher order differentials, In Fast Software Encryp-
tion, LNCS 1008, Springer-Verlag, 1995, pp.196-211.

16. L.R.Knudsen and T.A.Berson, Truncated differentials of SAFER, In Fast Software
Encryption, LNCS 1039, Springer-Verlag, 1996, pp.15-26.

17. B.S.Kaliski Jr. and M.J.B.Robshaw, Linear cryptanalysis using multiple linear
approximations, In Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-
Verlag, 1994, pp.26-39.

18. B.S.Kaliski Jr. and M.J.B.Robshaw, Linear cryptanalysis using multiple linear
approximations and FEAL, In Fast Software Encryption, LNCS 1008, Springer-
Verlag, 1995, pp.249-264.

19. L.Knudsen and M.J.B.Robshaw, Non-linear approximations in linear cryptanalysis,
In Advances in Cryptology-EUROCRYPT’96, LNCS 1070, Springer-Verlag, 1996,
pp.252-267.

20. X.Lai, On the design and security of block ciphers, PhD thesis, ETH, Zurich, 1992.
21. X.Lai and J.L.Massey, Markov ciphers and differential cryptanalysis, In Advances

in Cryptology-EUROCRYPT’91, LNCS 547, Springer-Verlag, 1991, pp.17-38.
22. C.H.Lim, CRYPTON: A new 128-bit block cipher, NIST AES Proposal, June 1998.
23. M.Matsui, Linear cryptanalysis method for DES cipher, In Advances in Cryptology-

EUROCRYPT’93, LNCS 765, Springer-Verlag, 1994, pp.386-397.
24. D.Wagner, The boomerang attack, in this proceedings.

	Motivations and Changes
	Algorithm Specifications
	Basic Building Blocks
	Encryption and Decryption
	Key Scheduling

	Security Analysis
	Diffusion Property of Linear Transformations
	S-Boxes Construction and Their Property
	Differential Cryptanalysis
	Linear Cryptanalysis
	Security against Other Possible Attacks
	Key Schedule Cryptanalysis

	Implementation and Efficiency
	Conclusion

