
Attack on Six Rounds of Crypton

Carl D’Halluin, Gert Bijnens, Vincent Rijmen?, and Bart Preneel?

Katholieke Universiteit Leuven , ESAT-COSIC
K. Mercierlaan 94, B-3001 Heverlee, Belgium

carl.dhalluin@esat.kuleuven.ac.be
gert.bijnens@esat.kuleuven.ac.be

vincent.rijmen@esat.kuleuven.ac.be
bart.preneel@esat.kuleuven.ac.be

Abstract. In this paper we present an attack on a reduced round version
of Crypton. The attack is based on the dedicated Square attack. We
explain why the attack also works on Crypton and prove that the
entire 256-bit user key for 6 rounds of Crypton can be recovered with
a complexity of 256 encryptions, whereas for Square 272 encryptions are
required to recover the 128-bit user key.

1 Introduction

The block cipher Crypton was recently proposed as a candidate algorithm for
the AES [5]. In this paper we describe a chosen plaintext attack that works if
the cipher is reduced to 6 rounds instead of the specified 12 rounds. Our attack
is based on the dedicated Square attack presented in [2], but because of the
differences between Square and Crypton, the attack has to be modified in
several points.

Previous analysis of Crypton led to the discovery of a failure of the key
scheduling, resulting in a number of weak keys [1,6]. Our attack works on a
reduced version of Crypton for all keys. For a final optimisation of the attack,
we exploit another feature of the key scheduling.

In Section 2 we give a short description of Crypton. We present the basic
attack in Section 3. Section 4 discusses the recovery of the user key. Section 5
and Section 6 discuss the extension of the attack to five rounds, and Section 7
gives the six round attack. We conclude in Section 8.

2 Description of Crypton

The block cipher Crypton is based on Square [2]. The plaintext data is ordered
in 16 bytes, which are put in a square scheme, called the state. If A is the state at
a certain moment, the different bytes of A are called (A)ij with i and j varying
from 0 to 3 (see Figure 1). Crypton uses 6 elementary transformations.
? F.W.O. Postdoctoral Researcher, sponsored by the Fund for Scientific Research -

Flanders (Belgium)

L. Knudsen (Ed.): FSE’99, LNCS 1636, pp. 46–59, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Attack on Six Rounds of Crypton 47

A30

A20

A10

A00

A31

A21

A11

A01

A32

A22

A12

A02

A33

A23

A13

A03

Fig. 1. Byte coordinates of the state

– σKi
e

is a key addition (EXOR) with round key i. This operation is the same
as the key addition in Square.

– πe and πo are linear transformations that act on columns of the state. The
π-transformations operate on two bits at a time, calculating a new value by
exoring the old values of two bits in corresponding positions in three different
bytes of the column. These operations are the replacement of the MDS-
based θ in Square. They can be implemented using four masks, denoted
M0, . . . M3.

– γe and γo are non-linear transformations that apply S-boxes to the diffe-
rent state bytes. They have the additional property that γe = γ−1

o . These
operations correspond to the single γ in Square.

– τ is a simple transposition (upper row becomes rightmost column, lower
row becomes leftmost column, . . .). This operation is the same as the π of
Square. Note that (D, C, B, A)t means that At is the upper row and Dt is
the lower row.

Throughout this text we use versions of Crypton with less rounds than the
standard number of rounds which is 12. The standard version of Crypton is :

Encrypt = φe ◦ ρeK12
e

◦ ρoK11
e

◦ · · · ◦ ρeK2
e

◦ ρoK1
e

◦ σK0
e

with




φe = τ ◦ πe ◦ τ
ρeK = σK ◦ τ ◦ πe ◦ γe

ρoK = σK ◦ τ ◦ πo ◦ γo

Since φe uses no key material, it is easily invertible by a cryptanalyst and there-
fore we do not consider it in the following text. For example a five round version
of Crypton means in this text :

Encrypt5 = ρoK5
e

◦ ρeK4
e

◦ ρoK3
e

◦ ρeK2
e

◦ ρoK1
e

◦ σK0
e
.

Unless stated otherwise the output state of round n is denoted Rn in this paper.
R0 represents the output after the initial key addition σK0

e
. PT represents the

plaintext and CT represents the ciphertext. So CT = φe(R12).



48 C. D’Halluin et al.

3 Basic Attack: 4 Rounds of Crypton

In this section we will explain how the dedicated Square attack [2] can be
modified to attack Crypton. Due to the differences between both algorithms,
the attack works in a slightly different way. The final 6-round attack allows to
recover the entire 256-bit user key immediately, using less computer time than
the equivalent attack on Square, which only recovers a 128-bit key. This makes
the attack much more significant on Crypton than on Square.

First we explain the attack on 4 rounds of Crypton and the reason why it
works. The attack on 4 rounds uses approximately 29 chosen plaintexts and their
corresponding ciphertexts. We show a way to recover a 128-bit user key without
using additional plaintexts. In the next Sections a 5-round and a 6-round attack
on Crypton are described, which require significantly more chosen plaintexts.

Let a Λ-set be a set of 256 states that are all different in some of the (16)
state bytes (the active) and all equal in the other state bytes (the passive). The
256 elements of the Λ-set are denoted Λa with a varying from 0 to 255. Let λ
be the set of indices of the active bytes (indices varying from 0 to 3). We have:

∀a, b ∈ {0 . . . 255} :
{

(Λa)ij 6= (Λb)ij for (i, j) ∈ λ
(Λa)ij = (Λb)ij for (i, j) /∈ λ.

We start with a Λ-set with a single active byte. From the definition it follows
that this byte will take all 256 possible values {0x00, 0x01, . . ., 0xff} over the
different states in the Λ-set. As a consequence, the Λ-set is balanced, by which
we mean:

255⊕
a=0

(Λa)ij = 0x00, ∀i, j.

This is valid for the one active byte because
⊕255

a=0 a = 0x00 and for the fifteen
passive bytes because

⊕255
a=0 b = 0x00 if b is a constant byte.

We now investigate the balancedness, the positions and the properties of the
active bytes through the subsequent transformations. After each transformation
we have a new set of active bytes, which is called the state scheme. If we say that
the state scheme is balanced we mean that the transformation of the original
Λ-set up to this point is still balanced. It is also important in the state scheme to
know some properties of each byte e.g. this byte is a constant for each element
of the Λ-set, or that byte takes every value of the set {0x00, 0x01, . . . , 0xff}
over the Λ-set (mathematically :

⋃255
a=0(Λa)ij ={0x00, 0x01, . . . , 0xff}).

Round 0 (initial key addition) The state scheme evolution through round 0
is displayed in Figure 2. We have a single active byte which takes 256 different
values over the Λ-set (full black square in the figure). The 15 other bytes are
passive and therefore they have a constant value over the Λ-set.

The initial key addition σK0
e

does not change the balancedness of the state
scheme because the EXOR-sum of 256 times the same key byte cancels out.



Attack on Six Rounds of Crypton 49

Fig. 2. State scheme through round 0

σK0
e

cannot change the state scheme either because the EXOR-addition with
a constant byte acts as a simple bijection in the set of all possible byte values
{0x00, 0x01, . . . , 0xff}. Hence, if we have 256 different byte values, the key
addition will map them on 256 different byte values, and if we have 256 times
the same byte value, the key addition will obviously map them on 256 times the
same byte value.

Fig. 3. State scheme through round 1

Round 1 γo does not change the state scheme nor the balancedness of the
scheme since γo is bijective for each of the bytes. So 256 different byte values
are mapped onto the same 256 different byte values. After πo we have one active
column. The other three columns are still passive. Now we investigate the pro-
perties of this active column. Therefore we have to take a closer look at the linear
transformation πo which acts separately on the four columns. Let A denote the
input state of πo and let B denote the output state. Now we can write πo as

B = πo(A)
m

(B)ij =
3⊕

k=0

(
(A)kj ∧ M(i+k) mod 4

)
,

where ∧ is the binary AND-operator and Mi with i = 0, 1, . . . , 3 is a masking
word, leaving 6 bits of every byte unmasked. For example M0 = 0x3fcff3fc. In
state A we have one active byte which takes 256 different values over the Λ-set.
Now πo acts on this Λ-set generating one active column, in which each of the
four bytes contains 6 bits of the original active byte of state A. Hence each byte
of the active column of state B must take 64 different values, each occurring
exactly 4 times.

Taking the EXOR of 4 times the same byte results in 0x00; state B = πo(A)
is still balanced. In Figure 3 the new active bytes, which take 64 different values



50 C. D’Halluin et al.

each occurring 4 times, are displayed with a white + symbol in a black square. τ
is a simple matrix transposition, which only changes the positions of the bytes,
but does not change their value. Thus, τ does not change the balancedness or
the properties of the state scheme. σK1

e
does not change the balancedness or the

properties either.

Fig. 4. State scheme through round 2

Round 2 Figure 4 shows the state scheme evolution through round 2. γe does
not change the state scheme since γe will map a byte value occurring 4 times
onto another byte value occurring 4 times. This does not change the EXOR-sum
of the bytes, which remains 0x00.

πe generates 16 active bytes (all bytes of the state are now active). Due to
the specific structure of πe (similar to that of πo), each byte of the output state
of πe takes n ≤ 64 different values. On a fixed position in the output state of πe,
every possible byte value (from 0x00 to 0xff) occurs either zero or a multiple
of 4 times, due to πe. On Figure 4 these bytes are shown as a white × symbol
on a black square. This occurrence in multiples of 4 can be explained with the
following example.

Suppose that we are working with nibbles 1. We have a Λ-set consisting of 16
nibbles e.g. Λ = {1110, 1110, 1110, 1110, 1010, 1010, 1010, 1010, 1111, 1111,
1111, 1111, 0001, 0001, 0001, 0001}. We now have a similar situation as the
real input Λ-set of πe. Now we look at the effect of a binary nibble mask e.g.
M = 1110 which leaves 3 of the 4 bits unmasked.

1110 ∧ 1110 = 1110 1111 ∧ 1110 = 1110
1110 ∧ 1110 = 1110 1111 ∧ 1110 = 1110
1110 ∧ 1110 = 1110 1111 ∧ 1110 = 1110
1110 ∧ 1110 = 1110 1111 ∧ 1110 = 1110
1010 ∧ 1110 = 1010 0001 ∧ 1110 = 0000
1010 ∧ 1110 = 1010 0001 ∧ 1110 = 0000
1010 ∧ 1110 = 1010 0001 ∧ 1110 = 0000
1010 ∧ 1110 = 1010 0001 ∧ 1110 = 0000

The table shows the effect of the bit masking. After the masking Λ = {1110,
1110, 1110, 1110, 1010, 1010, 1010, 1010, 1110, 1110, 1110, 1110, 0000, 0000,
0000, 0000}. Now the value 1110 occurs 8 times, the values 1010 and 0000 both
1 nibble = four-bit quantity



Attack on Six Rounds of Crypton 51

occur 4 times, and the other possible nibble values do not occur at all. We see
that the values in the resulting Λ-set occur in multiples of 4.

If we look at the real πe then the only thing we do is masking (leaving
unmasked 6 bits of every byte) and EXOR-additions. We can generalize our
conclusion from above and say that on every byte position every byte value in
the output state of πe occurs in multiples of 4 over the Λ-set. This leaves the
state balanced. τ and σK2

e
do not change the state scheme or the balancedness

for reasons mentioned before.

Fig. 5. State scheme through round 3

Round 3 γo does not change the state scheme properties or the balancedness
since γo will map a byte value occurring a multiple of 4 times on another byte
value occurring the same multiple of 4 times. This does not change the EXOR-
sum of the bytes, which remains 0x00.

After πo all bytes are still active but the different values no longer occur in
multiples of four. This destroys our structure and limits the power of the whole
attack. These active bytes are displayed in Figure 5 as grey squares. Nevertheless
the scheme is still balanced because of the linearity of πo. This can be proven
as follows. Let Aa denote the balanced input state of πo for the a-th element of
the Λ-set, and let Ba denote the corresponding output state. Then we have the
following:

Ba = πo(Aa)
⇓

255⊕
a=0

((Ba)ij) =
255⊕
a=0

3⊕
k=0

(
((Aa)kj) ∧ M(i+k) mod 4

)

=
3⊕

k=0




255⊕
a=0

((Aa)kj)

︸ ︷︷ ︸
=0x00


 ∧ M(i+k) mod 4

= 0x00.

τ and σK3
e

do not change the state scheme properties or the balancedness.



52 C. D’Halluin et al.

Round 4 The output of round 3 is balanced:

255⊕
a=0

(R3)a = (0),

with (0) the all-zero state scheme ((0)ij = 0x00,∀i, j). We drop the index a
because the following formulae are valid for each element of the Λ-set. We have
for the output of round 4:

R4 = ρeK4
e
(R3)

= σK4
e

◦ τ ◦ πe ◦ γe(R3).

Taking the inverse of this formula and using the linearity of πe and τ leads us to

R3 = γo

(
πe(τ(R4)) ⊕ πe(τ(K4

e ))
)
. (1)

Since R4 is known, we can determine πe(τ(R4)) completely. Now we guess one of
the 16 bytes of πe(τ(K4

e )). Using (1) we can calculate R3 for this byte position
for all 256 members of our Λ-set. If the EXOR of all these values is zero then we
have found a possible value for this key byte. We can do this independently for
all 16 key bytes. Experiments show that only one or two values are possible for
each key byte. If we do the same again starting with a different Λ-set, we can
find the 128 bits of round key K4

e with overwhelming probability.

4 Calculation of the User Key of 128 Bits

In this section we show how to calculate the user key of 128 bits when we know
one round key of 128 bits. In the previous section we have extracted round
key K4

e . The user key can now be calculated by taking into account the key
expansion:

(Ve[3], Ve[2], Ve[1], Ve[0])t = (τ ◦ γo ◦ σP ◦ πo)((U [6], U [4], U [2], U [0])t)
(Ve[7], Ve[6], Ve[5], Ve[4])t = (τ ◦ γe ◦ σQ ◦ πe)((U [7], U [5], U [3], U [1])t)

T0 = Ve[0] ⊕ Ve[1] ⊕ Ve[2] ⊕ Ve[3]
T1 = Ve[4] ⊕ Ve[5] ⊕ Ve[6] ⊕ Ve[7]

Ee[i] = Ve[i] ⊕ T1 for i = 0, 1, 2, 3
Ee[i] = Ve[i] ⊕ T0 for i = 4, 5, 6, 7

with U [i], i = 0, 1, . . . , 7 the user key and Ee[i] the expanded keys. In [3] it
is stated that if the user key is shorter than 256 bits it must be prepend by
zero-words e.g. a 64-bit user key means U [i] = 0x00000000 for i > 1.

We now try to calculate a 128-bit user key given K4
e . Using appropriate shifts

and constant additions we can easily find Ee[0], Ee[1], Ee[2] and Ee[3] given K4
e



Attack on Six Rounds of Crypton 53

with the following formulae (see appendices in [3]):

K4
e = (Ke[19], Ke[18], Ke[17], Ke[16])t

Ke[16] = Ee[0]�8 ⊕ RC1

Ke[17] = Ee[1]�24 ⊕ RC0

Ke[18] = Ee[2]�16 ⊕ RC1

Ke[19] = Ee[3]�8 ⊕ RC0.

Here A�i denotes the left-wise bit rotation of a 32-bit word A over i positions.
The problem to be solved can be stated as follows : Given Ee[i] for 0 ≤ i ≤ 3
calculate U [i] for 0 ≤ i ≤ 3 knowing that U [j] for 4 ≤ j ≤ 7 are all zero. We
are able to solve this problem with a byte-wise reconstruction of the unknown
values T0 and T1.

Rightmost byte of T1 (byte 0) First of all we have to guess byte 0 of T1.
This enables us to calculate byte 0 of Ve[i] for i = 0, 1, . . . , 3. Since

(Ve[3], Ve[2], Ve[1], Ve[0])t = (τ ◦ γo ◦ σP ◦ πo)((U [6], U [4], U [2], U [0])t),

we find that

σP ◦ γe ◦ τ(Ve[3], Ve[2], Ve[1], Ve[0])t = πo((U [6], U [4], U [2], U [0])t).

We know the upper row of the left side of this expression. From the right side we
know something about the structure of πo((U [6], U [4], U [2], U [0])t) since U [i] =
0x0 for i = 4, 5, . . . , 7. This structure is:

2 + + 0 0 2 + + + 0 2 + + + 0 2
+ + 0 2 2 + + 0 0 2 + + + 0 2 +
+ 0 2 + + + 0 2 2 + + 0 0 2 + +
0 2 + + + 0 2 + + + 0 2 2 + + 0

The symbols in this scheme denote 2-bit quantities in the total state. The four
symbols in the same row of a sub-group form together one byte of the state.
E.g., 2 + + 0 in the top left corner denotes the leftmost byte of U [0]t. A 0 or
a 2 respectively indicate to copy the corresponding two bits of U [0] or U [2]. A
+ indicates to write the EXOR of the corresponding two bits of U [0] and U [2].
The scheme can be derived by taking into account the different masks used in
the linear transformation πo (see [3]).

Byte 1 of T1 This byte can by found by checking the second row of
πo((U [6], U [4], U [2], U [0])t). The four 2-bit-positions in the scheme where we have
a + symbol in the upper and the second row must contain the same 2-bit values.
This results in approximately one possible value for byte 1 of T1.



54 C. D’Halluin et al.

Byte 2 of T1 This byte can be found by checking the third row of
πo((U [6], U [4], U [2], U [0])t). We can calculate in advance 12 2-bit-positions of
the third row of the scheme since s1⊕s2 = s3 with s1s2s3 a random permutation
of the symbols + 0 2. This also results in approximately one possible value for
byte 2 of T1.

Leftmost byte of T1 (byte 3) Since we have the upper three rows of the
scheme, we can calculate the lower row (using the same formula s1 ⊕ s2 = s3),
and calculate back to the leftmost column of (Ve[3], Ve[2], Ve[1], Ve[0])t. If we find
four times the same value for the leftmost byte of T1 by checking the Ee[i] values,
we have a possible user key. We do not expect that more than one valid user key
can be found.

5 Addition of a Fifth Round at the End

In this section we add a fifth round in the end to the basic attack by guessing
one column of round key K5

e at once. To recover K4
e we have to know only one of

the 16 bytes of πe(τ(R4)) at a time, so knowledge of one row of R4 is sufficient.
To add a fifth round to the attack we use the following formula:

R5 = σK5
e

◦ τ ◦ πo ◦ γo(R4)
⇓

R4 = γe

(
πo(τ(R5)) ⊕ πo(τ(K5

e ))
)
,

which is valid because of the linearity of πo and τ .
If we guess a row of πo(τ(K5

e )) we can calculate a single row of R4 and a single
column of πe(τ(R4)). Since R3 = γo

(
πe(τ(R4)) ⊕ πe(τ(K4

e ))
)

must be balanced,
we can exclude approximately 255

256 of our 240 guessed key values (232 for the row
of πo(τ(K5

e )) and 28 for the one byte of πe(τ(K4
e )) gives 240 guessed key values).

This means that we have to repeat this procedure for at least 5 Λ-sets in order
to find the round keys K5

e and K4
e from which we can calculate the entire 256-bit

user key due to the simple key scheduling mechanism (see appendices in [3]).

6 Addition of a Fifth Round in the Beginning

In this section we add a fifth round in the beginning to the basic attack. We try
to generate Λ-sets with only one active byte (taking 256 different values) at the
output of round 1. We start with a pool of 232 plaintexts that differ only in the
byte values of the first column. We assume a value for the 4 bytes of the first
column of the first roundkey. This enables us to compose a few sets.

Let A be the desired output state of πo of the first round and let PT be the
plaintext state.

A = (πo ◦ γo ◦ σK0
e
)(PT )



Attack on Six Rounds of Crypton 55

m
PT = (σK0

e
◦ γe ◦ πo)(A)

= K0
e ⊕ γe(πo(A))

Since in γe(πo(A)) only the first column is active, we can reuse the texts of our
pool for every value of K0

e . Given a Λ-set, we can recover the value of K5
e with

our four round attack on rounds 2, 3, 4 and 5. We repeat the attack several
times with different Λ-sets. If the values suggested for K5

e are inconsistent, we
have made a wrong assumption for the column of K0

e . With this method we can
find K0

e and K5
e , hence we can find the full 256 bits of the user key.

7 6-Round Version of Crypton

The six round attack is a combination of the two previous extensions of the basic
4-round attack. Due to the specific generation of round key K6

e we can make an
improvement of 216 on the dedicated Square attack, and recover the full 256
key bits.

We first guess 1 byte column of K0
e (232 possibilities). For each guess we can

generate some Λ-sets at the output of πo of round 1 with the formula:

PT = γe(πo(A)) ⊕ K0
e .

Addition of a round at the end requires the knowledge of a row of πe(τ(K6
e )). If

we know a column of K0
e then we also know 4 bytes of K6

e :

K0
e = (Ke[3], Ke[2], Ke[1], Ke[0])t

Ke[0] = Ee[0]
Ke[1] = Ee[1]
Ke[2] = Ee[2]
Ke[3] = Ee[3]

K6
e = (Ke[27], Ke[26], Ke[25], Ke[24])t

Ke[24] = Ee[0]�24 ⊕ RC1

Ke[25] = Ee[1]�24 ⊕ RC02

Ke[26] = Ee[2]�8 ⊕ RC1

Ke[27] = Ee[3]�8 ⊕ RC02

If we want to know a row of πe(τ(K6
e )) we have to know a column of K6

e and
we have to guess only 16 bits instead of the full 32 bits as in the Square attack
if we choose the right columns of K6

e .
This 6-round attack will recover K0

e and the equivalent K6
e , but also K5

e . From
these values we can calculate Ee[i] for i = 0, 1, . . . , 7, hence we can calculate the
entire 256-bit user key.



56 C. D’Halluin et al.

8 Conclusion

We have described attacks on several reduced round versions of the block cipher
Crypton. Table 1 summarizes the requirements of the attacks. The 5-round (a)
attack is described in section 5 and the 5-round (b) attack in section 6.

In its present form the described attack means no real threat to the full
12-round version of Crypton. However, after the discovery of weak keys [1,6]
of Crypton, this is the second time that the key scheduling of Crypton is
brought into discredit.

Table 1. Requirements for the described attacks on Crypton.

Attack # Plaintexts Time Memory
4-round 29 29 small

5-round (a) 211 240 small
5-round (b) 232 240 232

6-round 232 256 232

References

1. J. Borst, “Weak keys of Crypton,” technical comment submitted to NIST.
2. J. Daemen, L. Knudsen and V. Rijmen, “The block cipher Square,” Fast Software

Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149–165.
3. Lim, “CRYPTON : A New 128-bit Block Cipher,” available from [5].
4. Lim, “Specification and Analysis of Crypton Version 1.0,” FSE ’99, these procee-

dings.
5. NIST’s AES home page, http://www.nist.gov/aes.
6. S. Vaudenay, “Weak keys in Crypton,” announcement on NIST’s electronic AES

forum, cf. [5].

A Attack on Six Rounds of Crypton Version 1.0

In [4] a new version of Crypton is proposed, Crypton version 1.0. We ex-
plain briefly how to extend our results to version 1.0, which features two major
changes.

1. The nonlinear transformations γo and γe use now two S-boxes instead of
only one. This doesn’t influence our attack

2. The key scheduling has been changed, both in the generation of the expanded
keys and in the generation of the roundkeys from the expanded keys. This
influences our attack, but we will see that the attack still applies.



Attack on Six Rounds of Crypton 57

A.1 Round Key Derivation in Version 1.0

The relation between roundkey 0 and roundkey 6 is very important for the
complexity of our attack. In the new version this relation is more complex and
uses a new operation A�bi, which is defined as a left-wise bit rotation of each
of the four bytes of the 32-bit word A. The new calculation of roundkey 0 and
roundkey 6 is:

Ke[00] = Ee[0] ⊕ 0x09e35996
Ke[01] = Ee[1] ⊕ 0xfc16ac63
Ke[02] = Ee[2] ⊕ 0x17fd4788
Ke[03] = Ee[3] ⊕ 0xc02a905f
Ke[24] = (Ee[3]�b6)�8 ⊕ 0xa345054a
Ke[25] = (Ee[0]�b4)�16 ⊕ 0x56b0f0bf
Ke[26] = (Ee[1]�b4)�24 ⊕ 0xbd5b1b54
Ke[27] = (Ee[2]�b6)�8 ⊕ 0x6a8ccc83

Notice that if we know one column of (Ke[03], Ke[02], Ke[01], Ke[00])t then we
know 16 bytes of a certain column of (Ke[27], Ke[26], Ke[25], Ke[24])t because
of the double occurrence of the ·�8 operator in the previous table. This is the
reason why our six-round attack still works on version 1.0 with the gain of 216

time.

B Calculation of the User Key of 128 Bits

B.1 Generation of the Expanded Key

We show in this section how we can calculate the 128-bit user key when we know
one roundkey of 128 bits. In the specifications of Crypton version 1.0 [4] the
new generation of the expanded keys is as follows.

Let K = ku−1 . . . k1k0 be a user key of u bytes (u = 0, 1, . . . , 32). We assume
that K is 256 bits long (by prepending by as many zeros as required).

1. Split the user key into U and V as: for i = 0, 1, 2, 3,

U [i] = k8i+6k8i+4k8i+2k8i, V [i] = k8i+7k8i+5k8i+3k8i+1.

2. Transform U and V using round transformations ρo and ρe, respectively,
with all-zero round keys :

U ′ = ρo(U), V ′ = ρe(V ).

3. Compute 8 expanded keys Ee[i] for encryption as: for i = 0, 1, 2, 3,

Ee[i] = U ′[i] ⊕ T1, Ee[i + 4] = V ′[i] ⊕ T0,

where T0 =
⊕3

i=0 U ′[i] and T1 =
⊕3

i=0 V ′[i].

Since we know that U [i] and V [i] are all-zero for i = 2, 3 we know the lower 2
rows of U and V . Since U ′ = τ ◦ πo ◦ γo(U) we can calculate T1, T0 and the user
key by a byte-wise reconstruction of T1.



58 C. D’Halluin et al.

B.2 Reconstruction of the 128-Bit User Key

We have πo ◦ γo(U) = τ(U ′) with U = (0x0, 0x0, U [1], U [0])t. Let γo(U) =
(b, a, 1′, 0′)t with b = 0x8d63b1b1 and a = 0xb18d63b1. The a and b values can
be calculated from the definition of γo and from the S-boxes [4]. Now we try to
find the unknown values 0’ and 1’.

If we guess byte 0 of T1 (rightmost byte of T1) it is possible to calculate the
upper row of πo ◦ γo(U). The structure of this state is:

0′ b a 1′ 1′ 0′ b a a 1′ 0′ b b a 1′ 0′

b a 1′ 0′ 0′ b a 1′ 1′ 0′ b a a 1′ 0′ b
a 1′ 0′ b b a 1′ 0′ 0′ b a 1′ 1′ 0′ b a
1′ 0′ b a a 1′ 0′ b b a 1′ 0′ 0′ b a 1′

The rows in this scheme are counted from top to bottom starting with row 0.
The symbols in the scheme denote to copy the corresponding 2-bit values of the
following 32-bit values:

0′ = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ 0′,
1′ = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ 1′,
a = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ a,

b = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ b.

Since we know the upper row of the scheme (due to our initial guess of byte 0
of T1) we can calculate byte 1 of T1 because we can calculate 4 times 2 bits of
T1 on the positions of the second row of the scheme where we find a a symbol
(the symbols 1 in figure 6), because:

a = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ a

= (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ b ⊕ b ⊕ a

= b ⊕ (a ⊕ b),

and we know a ⊕ b. Now we can calculate row 1 of our scheme πo ◦ γo(U)
completely.

Fig. 6. 128-bit user key recovery

Next we calculate byte 2 of T1 using the positions in row 2 where we find a
a symbol (the symbols 2 in figure 6). We can check the correctness of byte 0 by



Attack on Six Rounds of Crypton 59

checking 8 additional symbols in row 2 (the black squares in row 2 in figure 6)
since we have the formulae:

a ⊕ 1′ ⊕ b = (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ a ⊕ (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ 1′ ⊕ b

= (0′ ⊕ 1′ ⊕ a ⊕ b) ⊕ 0′

= 0′

1′ ⊕ 0′ ⊕ a = . . .

= b.

and a and b are known in advance.
Finally we calculate byte 3 of T1 using the formula s0 ⊕ s1 ⊕ s2 = s3 with

s0s1s2s3 a permutation of the symbols { 0′, 1′, a, b }. If we obtain four times
the same value for byte 3 (in each of the four columns), we have found T1. If we
obtain several different values for byte 3 of T1 the initial assumption of byte 0
of T1 was wrong and we have to continue guessing it.

If we have found a correct value for T1 then we have found the state U ′ and U
completely. So we can calculate T0 =

⊕3
i=0 U [i] so we have state V ′ and finally

state V . V [2] and V [3] should both be 0x00000000.


	Introduction
	Description of CRYPTON

	Basic Attack: 4 Rounds of CRYPTON

	Calculation of the User Key of 128 Bits
	Addition of a Fifth Round at the End
	Addition of a Fifth Round in the Beginning
	6-Round Version of CRYPTON

	Conclusion
	Attack on Six Rounds of CRYPTON Version 1.0

	Round Key Derivation in Version 1.0

	Calculation of the User Key of 128 Bits
	Generation of the Expanded Key
	Reconstruction of the 128-Bit User Key


