A Theory of Restrictions for Logics and
Automata

Nils Klarlund

AT&T Labs—Research (klarlund@research.att.com)

Abstract. BDDs and their algorithms implement a decision procedure
for Quantified Propositional Logic. BDDs are a kind of acyclic automata.
Unrestricted automata (recognizing unbounded strings of bit vectors) can
be used to decide more expressive monadic second-order logics. Prime
examples are WS1S, a number-theoretic logic, or a string-based notation
such as those proposed in some introductory texts. It is not clear which
one is to be preferred. Also, the inclusion of first-order variables in either
version is problematic since their automata-theoretic semantics depends
on restrictions.

In this paper, we provide a mathematical framework to address these
problems. We introduce three and six-valued characterizations of regular
languages under restrictions. From properties of the resulting congruen-
ces, we are able to carry out detailed state space analyses that allows
us to solve the two problems in WS1S in a way that require no extra
normalization calculations compared to a naive decision procedure for
string-oriented logic.

We report briefly on the practical experiments that support our results.
We conclude that WS1S with first-order variables is the superior choice
among monadic second-order logics.

1 DMotivation

Biichi[2] and Elgot[4], and independently Trakhtenbrot[13], argued almost fourty
years ago that a logical notation, now called the Weak Second-order theory of
1 Successor or WS1S, would be a more natural alternative to what already
was known as regular expressions. WS1S has an extremely simple syntax and
semantics: it is variation of predicate logic with first-order variables that denote
natural numbers and second-order variables that denote finite sets of natural
numbers; it has a single function symbol, which denotes the successor function,
and has usual comparison operators such as <,=,€ and D. Biichi, Elgot, and
Trakhtenbrot showed that a decision procedure exists for this logic. The idea
is to view interpretations as finite strings over bit vectors and then to show by
explicit constructions of automata that the set of satisfying interpretations for
any subformula is a regular language. A distinguishing feature of this number-
theoretic approach is that the semantics refer to all the natural numbers or all
of finite subsets.

In contrast, the logical semantics often suggested in explanations of the logic-
automaton connection, such as in [11,12], is tied to the finiteness of the strings

N. Halbwachs and D. Peled (Eds.): CAV’99, LNCS 1633, pp. 406-417, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

A Theory of Restrictions for Logics and Automata 407

of a regular language. Here, the notation is interpreted over a string, which is
fixed for the purpose of the semantics. The string defines a set of positions from
0 to the length of the string minus 1; then, first-order variables range over this
set, and second-order variables over its subsets. This string-theoretic approach is
appealing for certain applications, for example in the description and verification
of parameterized hardware[1]. Among other names, these logics have been called
MSO(S)[12], SOM[+][11], and M2L(Str)[5,7]. They vary slightly, but we will
identify them as M2L(Str) in this paper.

There are at least three important reasons for preferring the number-theoretic
approach. (1) Its mathematical semantics is simpler. (2) WS1S appears to be
the stronger logic: it is easy to encode Presburger arithmetic in WS1S, but
no similar encoding is known for the string-theoretic formulation. Presburger
arithmetic by itself is a promising verification technique, see [3,10]. (3) There
are semantic problems in the string-theoretic formulation as pointed out in [7];
for example, what does a first-order variable denote if the string is empty and
thus define no positions?

Even so, it is not obvious that any string-theoretic problem solved by a deci-
sion procedure for M2L(Str) can be effectively encoded in WS1S. More precisely,
we desire an efficient translation algorithm, which we define to be one that in
linear time transforms any formula ¢ in M2L(Str) to a formula in WS1S ¢’
such that ¢’ is decided in time linear in the time that ¢ is decided. Let us call
the question of finding such an algorithm the translation problem. In practice,
of course, we want something stronger: the total running time of going around
WS1S should be no longer than using the M2L(Str) decision procedure directly.

Another problem with monadic second-order logics is that first-order va-
riables and terms are handled by formula rewritings transforming them into
second-order variables subjected to logical restrictions. Consequently, automata
corresponding to subformulas are not simply determined by the mathematical
semantics, but also by details of the rewritings. Alternatively, extra automata
product operations can be used to normalize these intermediate automata with
automata corresponding to the restrictions. The first-order semantics problem
is to find a representation that is no bigger than a normalized representation,
while not requiring extra normalization steps.

Contributions of This Paper

In this paper, we propose solutions to the translation problem and the first-order
semantics problem. Our solutions are based on a theory of restrictions that we
develop as follows.

We formulate a syntax for WS1S, where restrictions are made explicit, and
we provide initially three different semantics: (1) the ad hoc semantics that
correspond to the usual treatment of first-order variables, (2) the conjunctive
semantics, where all the intermediate automata are conjoined with restrictions,
and (3) the three-valued semantics. We explain why the ad hoc semantics must
be rejected, and why the conjunctive semantics would slow down the decision

408 N. Klarlund

procedure. We show that the three-valued semantics makes most normalizations
unnecessary. Also, we indicate how the three-valued semantics can be realized
using an automata-theoretic approach adapted from the standard WS1S decision
procedure.

To study the question of automata sizes, we give a detailed congruence-
theoretic analysis of a regular language under restrictions. We introduce a notion
of a thin language, and we show that the restrictions occurring in the treatment
of first-order variables and in the translation problem are thin. We prove that
languages under thin restrictions make comparisons of the conjunctive semantics
and the the three-valued semantics easy: the latter are the same as the former
except for some extra equivalence classes that we characterize. We show that
if the automata of restrictions are bounded, then the sizes of intermediate au-
tomata occurring under the three-valued semantics are, to within a constant
factor, the same as the sizes of automata of the conjunctive semantics.

We strengthen this result by exhibiting congruences based on a siz-valued
semantics that are no bigger (to an additive constant of 3) than those of the
conjunctive semantics. Our main result is that the resulting decision procedure,
while requiring only few normalizations, involve intermediate automata that
are up to exponentially smaller than the ones occurring under the conjunctive
semantics.

Finally, we report on our integration of the theory presented here into the
tool Mona[9], which implements a decision procedure for WS1S. We conclude
that WS1S, and not a string-oriented logic, is the superior logical interface to
automata calculations.

2 WSI1S: Review and Issues

Nutshell WS1S can be presented as follows. A formula ¢ is composite and of
the form ~¢/, ¢' & ¢, or ex2 P': ¢, or atomic and of the form P’ sub P/,
Pi <= pPi Pi=Pi \ P* or P’ =PJ +1. Here, we have assumed that variables
are all second-order and named P?, where ¢ > 1. Other comparison operators,
second-order terms with set-theoretic operators, and Boolean connectives can
be introduced by trivial syntactic abbreviations, see [9,12]. The treatment of
first-order terms is discussed later.

Semantics of WS1S Given a fixed main formula ¢g, which we sometimes
regard as an abstract syntax tree (with its root facing up), we define its semantics
inductively relative to a string w over the alphabet B¥, where B = {0,1} and
k is the number of variables in ¢g. We assume that ¢q is closed and that each
variable is bound in at most one occurrence of an existential quantifier. Generally,
we assume that all formulas are subformulas of ¢g. We now regard a string
w=ag---ap—1, where £ = |w| is the length of w, to be of the form:

1 1 1
P ag ag_q

k k k
P Qg ay_q

A Theory of Restrictions for Logics and Automata 409

where we have indicated that if the string is viewed as a matrix, then row 1
is called the P’-track. Each letter a is sometimes written in a transposed not-
ation as (a',...,a")!. The interpretation of P’ defined by w is the finite set
{j | the jth bit in the Pi-track is 1}. Note that suffixing w with any string con-
sisting of letters of the form (0,...,0)" does not change the interpretation of
any variable. Therefore, we will say that w is minimum if it possesses no such
non-empty suffix.

The semantics of a formula ¢ can now be defined inductively relative to an
interpretation w. We use the notation w F ¢ (which is read: w satisfies ¢) if the
interpretation defined by w makes ¢ true:

wkE ~¢ iff wk ¢

wkE ¢ & ¢’ iff wk ¢ and w E ¢”
wkex2 P': ¢ iff 3 finite M C N : w[P!— M]E ¢/
wk Pt sub P/ iff w(P?) C w(P7)

wE Pi<= Pl iffVhew(P): 3k € w(Pi):h<k
w b PP = PI\P¥ iff w(P?) = w(P7)\w(P¥)

wk Pl=Pl +1 iffw(P) ={j+1]|j€cwP)}

where we use the notation w[P? — M] for the shortest string w’ that interprets
all variables P7, j # i, as w does, but interprets P? as M. Note that if we here
assume that w is minimum, then w is of the form w - wq, where all tracks, except
the Pi-track, in wq are all Os and either @ is empty or at least one non-P? track
in w is of the form B*-1. Then, w’ is of the form - w"”, where w” is 0 everywhere
except for the P-track, which is of the form B* - 1 if non-empty.

Note that the interpretation of ¢q is independent of w, since it is a closed
formula. Thus, ¢¢ is either true or false, and we write either F ¢y or ¥ ¢q. For
any formula ¢, we associate the language Ly = {w | w F ¢}.

2.1 Automata-Theoretic Semantics

The automata-theoretic semantics defines a decision procedure that associates
to each ¢ the minimum automaton A, accepting the language Ly. For atomic
formula, a small automaton (with at most three states) can be directly con-
structed. For a formula ¢ of the form ~¢’, the automaton Ay is taken to be the
complement of the automaton Ay, which is calculated by induction. Note that
this automata-theoretic semantics of negation is symmetric: the complement
automaton is gotten by just reversing final and non-final states. The case of con-
junction is handled by an automata-theoretic product construction, followed by
a minimization construction. Finally, the case of quantification is slightly more
complicated. Consider ¢ = w F ex2 P': ¢/. We calculate A, from Ay by means
of an intermediate, nondeterministic automaton Ay~ that is gotten from Ay in
two steps. First, any state for which a path exists to an accepting state along
a string of letters of the form (0,...,0,X,0,...,0) (where the X means that
the value of the ith component is irrelevant) is made accepting. Second, for any
transition of the form (s, a, s’) from state s to s, we add the transition (s, a, s”),

410 N. Klarlund

where s” is the state reached according to the unique transition (s,@, s”) with @
being the same letter as a except that the ¢th component is negated. The auto-
maton Ay is then calculated by determinizing Ay, followed by a minimization
construction.

2.2 Semantics of First-Order Variables

Adding first-order variables to WS1S can easily be done as follows: a first-order
variable p is regarded as a second-order term P that is restricted to take on
values that are singleton sets, where the sole element denotes the value of p,
see [12,11,8]. The restriction can be imposed by conjoining a singleton predicate
singleton(P) to the formula where P is quantified. This ad hoc strategy me-
ans that the semantics of a formula containing p is not robust: its meaning on
interpretations w not fulfilling singleton(P) is not well-defined. Even if the
restriction is imposed whenever p occurs in an atomic formula, the semantics is
not closed under complementation. For example, the formula ¢ = p=0, where
p is first-order is handled as ¢’ = P={0}, where P is second-order. But the
complement of ¢’ is ~(P = {0}), something that is different from the represen-
tation of “(p = 0), namely ~(P = {0}) & singleton(P). The solution is to
conjoin the restriction to every subformula ¢ in a procedure we call normaliza-
tion. Then, we would have a simple explanation of the language L(¢) that we
call the conjunctive semantics.

The practical problem with the conjunctive semantics is that additional pro-
duct and minimization calculations would be necessary: for each automaton A
representing a subformula ¢ and each free variable P?, the automaton repre-
senting the singleton property for P® must be conjoined to A. Such extra cal-
culational work slow down the decision procedure, probably by a factor of at
least two. (Complementation, which is normally fast since it consists of flipping
acceptance statuses of states, now would involve a product and a minimization
operation; and product operations would involve at least one additional product
and minimization even if the restrictions are calculated separately.) So in prac-
tice, the Mona implementation (prior to the one implemented with the results
of this article) used the ad hoc strategy: the restriction for variable p is conjoi-
ned only to atomic formulas where p occur and to the formula in the existential
quantification introducing p.

Ad hoc emulation of string semantics in WS1S A simplified syntax for the string-
theoretic version of monadic second-order logic is the same as nutshell WS1S
syntax. The satisfaction relation is denoted Ftring; it is the same as for WS1S
except that quantification is changed to:

W Fstring €x2 P1: ¢ iff IM C {0,... ,|Jw| — 1} : w[P" — M]E ¢’

where the notation w[P? — M] now has a different meaning: it denotes the string
w altered so that the P* track describes M. Thus, the witness string w[P" +— M]
for the existential quantification has the same length as w. The interpretation

A Theory of Restrictions for Logics and Automata 411

of ¢y on a string of w still does not depend on the individual tracks of w, but
it does depend on the length of w. Thus we write i Fyring @0 if ¢o holds for a
string w of length 4. For example, a closed formula can be written that under
this semantics holds if and only if w is of even length.

To emulate Fing in F, we must restrict all second-order terms to sets of
numbers less than or equal to the last position in the string. Thus, we introduce
a first-order variable $ that simulates the entity |w| — 1. A $-constraint for a
variable expresses that the variable is a subset of {0, ... ,$}. Then, we normalize
all formulas by conjoining $-constraints for all free variables. The result is a
WSI1S formula ¢’ with one free variable $ such that i Fging ¢ < w E ¢', where
the $-track of w interprets $ as i. For example, the formula ex1 p: exl q: p=g¢
becomes in WS1S

ex2 P:ex2 Q:
singleton(P) & singleton(Q) & singleton($)
& P<=$ & Q<=$ & Psub@ & Q sub P

as expressed in nutshell syntax, whereas the M2L(Str) formulation is

ex2 P:ex2 Q:
singleton(P) & singleton(Q)
Psub@ & (Q sub P

Proposition 1. Under the translation outlined above, the minimized, canonical
automata arising during the WS1S decision procedure are essentially the same as
the ones arising during the M2L(Str) procedure except for one or two additional
states.

Proof. The WS1S automaton can be gotten from the M2L(Str) automaton by
considering the $-track as some P? track and by adding states Saccept (a1 ac-
cepting state) and syeject (2 rejecting state). The transition relation of the new
automaton is the same as for the old one as long as the $-component is 0. When
the $-component is 1, corresponding to the end of the string under the M2L(Str)
representation, a transition is made to Saccept OF Sreject according to the accept
status of the state that would have been reached in the old automaton. From
Saccept, & transition is made to Speject if the $-component is 1 or if any other
component corresponding to a first-order variable is 1; otherwise, the transition
is made t0 saccept. The Speject State is connected to itself on all letters. The WS1S
automaton so described may not be minimum, since the reject state may already
have been present in the automaton. All other states of the old automaton are
still distinct when considered as part of the new automaton.

Our practical experiments with running string-based examples translated into
WSI1S were based on this ad hoc strategy. We discovered the following problem.

Parity example Consider the formula ex1 p: (pin P! <=>-..<=> pin P") under
the string-theoretic semantics. The formula holds if and only if there is a position

412 N. Klarlund

contained in an even number of the sets P?. Translated into nutshell WS1S under
the ad hoc strategy, the formula becomes:

ex2 P: (PinP' & singleton(P) & singleton($) & P'<=$) <=>
L= (1)
(Pin P" & singleton(P) & singleton($) & P"<=3$).

Proposition 2. The parity formula (1) produces intermediate automata whose
size is doubly exponential in n. But if the restrictions are conjoined to all subfor-
mula, not only the atomic ones, then all intermediate automata have less than
6 states.

We formalize the ad hoc semantics in the next section; but already here, it is
clear that it is inadequate for restrictions.

3 WSI1S with Restrictions and a Three-Valued Semantics

To give a precise understanding of restrictions, we introduce nutshell WS15-R,
a variation on WSI1S where restrictions are made explicit. Existential quantifi-
cation becomes ex2 P’ where p: ¢'. Let p(P?) = p be the restriction of variable
P?. Also, we assume that each P? is restricted, possibly to the formula P'=P?,
i.e., true. The semantics we will propose for this syntax rely on an exact under-
standing of the binding mechanisms in play. We say that in p(P?), variable P*
is p-bound. Variable P! is ezistentially bound in both p(P?) and ¢’. A variable
occurrence P? is free in the conventional part of ¢ if P is free in ¢ in the usual
sense, where ¢ is regarded as an independent formula, and the occurrence is
not within a restriction of an existential quantification within ¢. The relevant
variables, RV(¢), for formula ¢ is the least set of variables P such that there
is an occurrence of P that is not p-bound and that is free in the conventional
part of ¢ or free in the conventional part of p(P’), where P’ € RV(¢). We define
the induced restriction p*(¢) to be the conjunction of the restrictions of relevant
variables, that is, /\PieRv(¢)'

To carry out inductive arguments, we define the partial ordering < among
subformulas (regarded as nodes in the abstract syntax tree) as follows: ¢ < ¢/
if ¢ is a subformula of ¢’ or if there is a formula 1) = ex2 P’ where p(P?): ¢"
such that ¢ is a subformula of p(P?) and ¢’ is a subformula of ¢”. The partial
ordering < is well-founded (a post-order labeling of nodes with numbers 0,1, ...
produces an ordering containing). Note for each P € RV(¢), p(P) <1 ¢. This
will ensure that the semantic definitions to follow make sense.

The ad hoc semantics We state the ad hoc semantics using a meaning function
[¢]¢" (anticipating multi-valued semantics):

A Theory of Restrictions for Logics and Automata 413

[¢]"w = —[¢/] "
[[¢/ & ¢//]]ahw — |I¢l]]ahw A [[¢”]“hw
1 if 3M : [¢']**w[Pt +— M] =1 and [p*(P})]*" =1

2Pz h . 1M ah — 3 .
[ex where p: ¢']*"w {0 it VM : [¢/]*w[PF s M] =0 or [p*(P)]% =0

1 ifwkE P sub P7 and [p*(P? sub P?)]%w =1

P sub Pi]ohy = , . . .
[P sub PA]%w {0 if w ¥ P sub PY or [p*(P* sub P?¥)]%w =0

We have only shown the semantics of one kind of atomic formula; the others
are treated similarly. (The normalization of atomic formulas is optional.)

The conjunction semantics This semantics is the same as the ad hoc seman-
tics except that the restrictions are also applied to the case of & and ~.

The three-valued semantics Let BY = B U{L} be the extended Boolean domain.
We use L to denote a “don’t care” situation, one where not all the restrictions
hold. Boolean operators A® and =2 are defined on this domain as for the usual
case with the added rule that if any argument is L, then the result is L.
91w = -*[0)Fw

6 & 9'Fw = [#FPw A° [0
if 3IM : [¢Pw[Pi— M) =1
if VM : [¢/']Pw[P* — M] # 1 and 3M : [¢']3w[P*— M] =0
ifVM : [¢Pw[Pt— M) =1
if w E P* sub PJ and [p*(P* sub P/)Pw =1
if w ¥ P* sub P7 and [p*(P* sub PY)]? =1
if [p* (P sub PH)]3 #1

[ex2 P! where p: ¢'Pw =

[Pt sub PPw =

o = - o=

Something seems to be missing in this semantics: the enforcement of a re-
striction of a variable in an existential quantification. The proposition below
shows that the restriction bubbles up automatically if needed. The semantics
works only if we require that every restriction is satisfiable given that the re-
strictions referred to by the restriction are already true. Formally, for subformula
¢ = ex2 P! where p: ¢’ of ¢g, we require

E & P)) => ex2 Pt 2
(PERV(¢,)\{Pi}p() x p (2)

The semantics is now justified as:
Proposition 3. Given the requirement (2), the following holds.

(a) w i p(P?) for some P* inRV(¢) & whp*(9) & [oPw= L.
(b)wEd&p'(p) « [¢JPw=1
(JwE & p (¢ & [glPw=0

414 N. Klarlund

Automata-theoretic realization of the three-valued semantics The pro-
cedure outlined in Section 2.1 can be modified to reflect the three-valued seman-
tics. The case of existential quantification requires a slightly more sophisticated
reclassification of the acceptance statuses of states prior to the subset construc-
tion. Let us call the resulting algorithm the three-valued decision procedure.

4 Congruences for Restricted Languages

All languages considered will be regular and over the alphabet X = B*. For
a language L, the canonical right-congruence ~y is defined as u ~p, v iff Vw :
u-w € L < v-w € L, where u,v,w € X*. The set of congruence classes is denoted
X*/~r,. This set can be regarded as the canonical, finite-state automaton.
Consider languages L, sometimes called the property, and R, assumed non-
empty, called a restriction. Thus, Ly and Lp«(4) constitute such a pair for
any subformula ¢ of ¢g. The conjunction representation is L' = L N R, and
the conjunction congruence is ~pnr. The three-valued representation is not a
language, but a function X%R(u), defined to be 1 if u € LN R, 0 if u €

LNR, and L if u ¢ R. The three-valued congruence N%,R is then defined
by u ~3 v & for all w, x3 p(u-w) = x} z(v-w).

4.1 Relating the Conjunction and Three-Valued Semantics

A thin language R is a non-empty set of strings such that
Yu,v,w:udpv=u-w¢ RVv-w¢R (3)

In particular, the canonical automaton for R has exactly one accepting state.

Proposition 4. 1. Rgpgietoni) = {u € B* | track i contains exactly one occur-
rence of a 1} is thin.
2. The language

Rg_restrict(i) = {u € B* |the occurrences of 1 in track i are all in positions
no greater than that of the first occurrence of a 1
in track $} N Rgingicton(s)

is thin.

3. If R and R’ are thin and RN R’ # 0, then RN R’ is thin.

4. Let R be thin, and let L be any language. If u ~pnr v and u has an accepting
extension, then u ~g v (and, consequently, u N%,R v).

5. If u and v both have no accepting extensions, then u ~g v & u ~3 5 v.

6. Thus, if R is thin, then |X*/~3 5 | <|2%~par |+ |2%/~r |

From this proposition, it follows easily that all p*(¢) are thin languages if va-
riables are subjected to first-order restrictions or $-restrictions (or both). The
proposition also tells us that X*/ N%, R is pieced together from X*/~p~g plus a
subset of X*/~p.

A Theory of Restrictions for Logics and Automata 415

Proposition 5. Assume that all restrictions are thin languages. If the automata
of restrictions are bounded in size, then the sizes of the intermediate, minimi-
zed automata in the three-valued decision procedure are the same, to within an
additive constant, as the sizes of corresponding automata under the conjunctive
semantics.

This result is the justification for the practical use of the three-valued semantics
since usually the number of first-order variables in simultaneous use is quite
small. (The size of the additive constant is exponential in the number of free
first-order variables.) And as with the ad hoc semantics, normalizations are not
required for most subformulas, and the automata are, apart from the X*/~g
parts, the same as those that occur when the automaton of every subformula is
normalized.

4.2 The Six-Valued Representation

We show next how to get rid of the boundedness assumption in Proposition 5.
Define a string u to be interesting if it has (a) some extension v, called an
accepting extension, such that «-v in LN R, and (b) some extension 7, called a
rejecting extension, such that «-7 in LN R. Also, a “don’t care” extension is one
that makes a string fall outside R. Note that all prefixes of an interesting string
are also interesting. In other words, an uninteresting string cannot be extended
so as to become interesting. The truth-value ¢(u) denotes whether a string is
interesting. Let cut(u) be the shortest uninteresting prefix of u if such a prefix
exists; otherwise, when all prefixes are interesting, cut(u) is defined to be u. The
membership status €(u) of uninteresting u is defined by

1 if cut(u) has an accepting extension
€(u) = ¢ 0 if cut(u)u has a rejecting extension (4)

1 if all extensions of cut(u) are “don’t care”

(These three cases are clearly mutually exclusive.) When u is interesting, e(u) is
defined to be x? p(u). Define the sexpartite representation X, g to be (1(u), €(u)).
The canonical siz-valued congruence N% r is defined from the representation as
before. Now, an equivalence class M is either interesting or non-interesting. In
the latter case, there is a value E € B such that for all u € M, e¢(u) = Ej
moreover, for all v, u-v is also in M. Thus, the non-interesting equivalence classes
are graph-theoretic sinks when E/N%’ r is regarded as a finite-state automaton.
There are between 0 and 3 such classes, depending on L and R.

Let ¢ be a natural number and let £ : 2)* = B be a Boolean characterization
of all strings. We say that ~ quasi-refines ~ up to ¢ under £ when there are
strings uq, . .. , u. such that

Vu,u' : E(u) Au~u' = () Aumu and
Vu,u' - =f(u) ANu~u' = =W)NTFijruru; AN =y

(5)

416 N. Klarlund

Thus, & respects ~ (that is, it can mapped through X*/ ~) and ~ is as least
as fine as = on strings for which £ holds; but, when £ doesn’t hold, strings are
mapped to one of the ¢ designated equivalence classes of ~.

Proposition 6. If R is thin, then ~pnr quasi-refines N%,R up to 3 under {(u) =
“there is an accepting extension of u.”

Thus, the six-valued congruence squeezes the parts of E*/N‘; r that corresponds
to X*/~p (as explained after Proposition 4) into at most three classes.

4.3 Six-Valued Semantics for WS1S and Sexpartite Automata

Under the six-valued semantics, the automaton corresponding to ¢ calculates
~%¢7 L) by a six-way partition of the states. For non-interesting strings, it
may erroneously calculate a value in {0, 1}, where the three-valued semantics
specifies L. Consequently, a product with the automaton for the restriction of
a variable must be carried out before the qualifier elimination in the WS1S-R
decision procedure. However, it can be shown that no minimization is necessary
following this step. Let us call the resulting algorithm the siz-valued decision
procedure. Thus, we may improve Proposition 5:

Theorem 1. Assume that all restrictions are thin languages.

1. The sizes of the intermediate, minimized automata occurring during the siz-
valued decision procedure are (to within an additive constant) less than those
of the conjunctive semantics.

2. The conjunctive automata may be erponentially bigger than the siz-valued
automata.

3. The siz-valued decision procedure require no normalization for products and
complementations.

5 In Practice

We showed experimental evidence in [6] that we had found WS1S to be as fast a
way to decide string-theoretic problems as M2L(Str) but only after sometimes
solving by hand state explosion problems like the one discussed in Section 2.2.

Since June 1998, the Mona tool has been based on the three-valued semantics
for WS1S, and our state explosion problems stemming from running M2L(Str)
formulas through WS1S have disappeared. Moreover, with a default restriction
mechanism that we have added to Mona, M2L(Str) formulas can be directly
embedded in WS1S. The running times under this semantics are in all non-
contrived cases the same (to within 5% or so) as for the ad hoc semantics we used
before. (In practice, we used first-order restrictions that are not thin languages,
but which enjoy similar properties.) We have not yet implemented the six-valued
semantics, but there is no reason not to expect that it will run as fast, while
sometimes making intermediate automata smaller.

Thus, we believe to have established WS1S as the superior choice for a prac-
tical logical notation associated with automata.

A Theory of Restrictions for Logics and Automata 417

Acknowledgements Anders Mgller implemented the ideas presented here and contri-
buted many useful insights. Jacob Elgaard found exploding Mona code from which the
parity example was derived. Ken McMillan kindly discussed restriction issues with me.
And thanks to the referees for pointing out some errors in an earlier version.

References

10.

11.

12.

13.

David Basin and Nils Klarlund. Automata based symbolic reasoning in hardware
verification. Formal Methods in System Design, pages 255-288, 1998. Extended
version of “Hardware verification using monadic second-order logic,” Computer
aided verification : Tth International Conference, CAV ’95, LNCS 939, 1995.

J.R. Biichi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66-92, 1960.

Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking of
infinite state systems using presburger arithmetic. In Proceedings of the 9th Inter-
national Conference on Computer Aided Verification (CAV ’97), volume 1254 of
LNCS, pages 400-411. Springer, 1997.

C.C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21-52, 1961.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In Tools and Algo-
rithms for the Construction and Analysis of Systems, First International Works-
hop, TACAS 95, LNCS 1019, 1996.

. Anders Mgller Jacob Elgaard, Nils Klarlund. Mona 1.x: new techniques for wsls

and ws2s. In Computer Aided Verification, CAV ’98, Proceedings, volume 1427 of
LNCS. Springer Verlag, 1998.

P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: a flexible tool-
set for Monadic Second-order Logic. In Computer Aided Verification, CAV ’97,
Proceedings, LNCS 1217, 1997.

N. Klarlund. Mona & Fido: the logic-automaton connection in practice. In CSL
’97 Proceedings. LNCS 1414, Springer-Verlag, 1998.

Nils Klarlund and Anders Mgller. MONA Version 1.8 User Manual. BRICS, 1998.
URL: http://wuw.brics.dk/mona.

Thomas R. Shiple, James H. Kukula, and Rajeev K. Ranjan. A comparison of
Presburger engines for EFSM reachability. In Computer Aided Verification, CAV
’98, Proceedings, volume 1427 of LNCS. Springer Verlag, 1998.

Howard Straubing. Finite Automata, Formal Logic, and Circuit Complezity.
Birkh&user, 1994.

Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salo-
maa, editors, Handbook of Formal Languages, chapter Languages, automata, and
logic. Springer Verlag, 1997.

B.A. Trakhtenbrot. Finite automata and the logic of one-place predicates. Sib.
Math. J, 3:103-131, 1962. In Russian. English translation: AMS Transl., 59 (1966),
pp- 23-55.

	Motivation
	WS1S: Review and Issues
	Automata-Theoretic Semantics
	Semantics of First-Order Variables

	WS1S with Restrictions and a Three-Valued Semantics
	Congruences for Restricted Languages
	Relating the Conjunction and Three-Valued Semantics
	The Six-Valued Representation
	Six-Valued Semantics for WS1S and Sexpartite Automata

	In Practice

