Skip to main content

Distributionally-Hard Languages

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

  • 1060 Accesses

Abstract

Define a set L to be distributionally-hard to recognize if for every polynomial-time computable distribution μ with infinite support, L is not recognizable in polynomial time on the μ-average. Cai and Selman

funded in part by NSF grant CCR97-32922

The author performed part of this research while visiting the Department of Computer Science, University of Chicago

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17(6):1193–1202, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical Systems Theory, 18(1):1–10, June 1985.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. Journal of Computer and System Sciences, 44(2):193–219, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Book. Tally languages and complexity classes. Info. and Control, 26:186–193, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  5. J-Y. Cai and A. Selman. Fine separation of average time complexity classes. SIAM Journal on Computing, 28(4):1310–1325, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Fortnow. Relativized worlds with an infinite hierarchy. Information Processing Letters, 69(6):309–313, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Gurevich. Average case completeness. Journal of Computer and System Sciences, 42:346–398, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Hardy. Orders of Infinity, The 'infinitärcalcül' of Paul du Bois-Reymond, volume 12 of Cambridge Tracts in Mathematics and Mathematical Physics. Cambridge University Press, London, 2nd edition, 1924.

    Google Scholar 

  9. J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME versus NEXPTIME. Inf. Control, 65:158–181, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical Computer Science, 34:17–32, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

    Google Scholar 

  12. L. Hemachandra and S. Jha. Defying upward and downward separation. In Proceedings of the Tenth Annual Symposium on Theoretical Aspects of Computer Science, volume 665 of Lecture Notes in Computer Science, pages 185–195. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  13. L. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate schemes. Acta Informatica, 34(11):859–879, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth Annual IEEE Conference on Structure in Complexity Theory, pages 134–147, 1995.

    Google Scholar 

  15. R. Impagliazzo and G. Tardos. Search versus decision in super-polynomial time. In Proc. IEEE Foundations of Computer Science, pages 222–227, 1991.

    Google Scholar 

  16. S. Kautz and P. Miltersen. Relative to a random oracle, NP is not small. In Proceedings of the Ninth Annual IEEE Structure in Complexity Theory Conference, pages 162–174, 1994.

    Google Scholar 

  17. K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System Sciences, 26:209–211, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Levin. Average case complete problems. SIAM Journal on Computing, 15:285–286, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Graduate Texts in Computer Science. Springer, New York, second edition, 1997.

    Google Scholar 

  20. T. Long and A. Selman. Relativizing complexity classes with sparse oracles. Journal of the ACM, 33(3):618–627, 1986.

    Article  MathSciNet  Google Scholar 

  21. J. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if NP is not small. In Proceedings of the Eleventh Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, volume 755, pages 415–426, Berlin, 1994. Springer-Verlag.

    Google Scholar 

  22. E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Science, 136:487–506, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Pavan and A. Selman. Complete distributional problems, hard languages, and resource-bounded measure. Theoretical Computer Science, 1998. To appear.

    Google Scholar 

  24. R. Schuler and T. Yamakami. Sets computable in polynomial time on the average. In Proceedings of the First Annual International Computing and Combinatorics Conference, Lecture Notes in Computer Science, volume 959, pages 650–661. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  25. A. Selman. A survey of one-way functions in complexity theory. Mathematical Systems Theory, 25:203–221, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Wang. Average-case computational complexity theory. In L. Hemaspaandra and A. Selman, editors, Complexity Theory Retrospective II, pages 295–328. Springer-Verlag, 1997.

    Google Scholar 

  27. A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fortnow, L., Pavan, A., Selman, A.L. (1999). Distributionally-Hard Languages. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics