Skip to main content

On Routing in Circulant Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1627))

Included in the following conference series:

Abstract

We investigate various problems related to circulant graphs — finding the shortest path between two vertices, finding the shortest loop, and computing the diameter. These problems are related to shortest vector problems in a special class of lattices. We give matching upper and lower bounds on the length of the shortest loop. We claim NP-hardness results, and establish a worst-case/average-case connection for the shortest loop problem. A pseudo-polynomial time algorithm for these problems is also given. Our main tools are results and methods from the geometry of numbers.

Supported in part by NSF grant CCR-9634665 and a J. S. Guggenheim Fellowship.

Supported in part by ARC grants A49702337 and A49801415.

Supported in part by NSF grant CCR-9634665.

Supported in part by ARC grant A69700294.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Ajtai. Generating hard instances of lattice problems. In Proc. 28th Annual ACM Symposium on the Theory of Computing (1996) 99–108.

    Google Scholar 

  2. M. Ajtai. The shortest vector problem in L 2 is NP-hard for randomized reductions. In Proc. 30th Annual ACM Symposium on the Theory of Computing (1998) 10–19.

    Google Scholar 

  3. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proc. 29th ACM Symposium on Theory of Computing (1997) 284–293.

    Google Scholar 

  4. S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. In Proc. 34th IEEE Symposium on Foundations of Computer Science (FOCS), 724–733, 1993.

    Google Scholar 

  5. J.-C. Bermond, F. Comellas and D. F. Hsu. Distributed loop computer networks: A survey. Journal of Parallel and Distributed Computing 24 (1995) 2–10.

    Article  Google Scholar 

  6. J-Y. Cai. A relation of primal-dual lattices and the complexity of shortest lattice vector problem. Theoretical Computer Science 207 (1998) 105–116.

    Article  MATH  MathSciNet  Google Scholar 

  7. J-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice problems. In Proc. 38th IEEE Symposium on Foundations of Computer Science (1997) 468–477.

    Google Scholar 

  8. J-Y. Cai and A. Nerurkar. Approximating the SVP to within a factor \( \left( {1 + \frac{1} {{\dim ^ \in }}} \right) \) is NP-hard under randomized reductions. In Proc. 13th Annual IEEE Conference on Computational Complexity (1998) 46–55.

    Google Scholar 

  9. J. W. S. Cassels. An introduction to the geometry of numbers. Springer-Verlag, 1959.

    Google Scholar 

  10. N. Chalamaiah and B. Ramamurty. Finding shortest paths in distributed loop networks. Inform. Proc. Letters 67 (1998) 157–161.

    Article  Google Scholar 

  11. Y. Cheng and F. K. Hwang. Diameters of weighted loop networks. J. of Algorithms 9 (1988) 401–410.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. A. Dias da Silva and Y. O. Hamidoune. Cyclic spaces for Grassmann derivatives and additive theory Bull. Lond. Math. Soc. 26 (1994) 140–146.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Dinur, G. Kindler and S. Safra. Approximating-CVP to within almost-polynomial factors is NP-hard. 1998.

    Google Scholar 

  14. P. Erdös and H. Heilbronn On the addition of residue classes mod p Acta Arithm. 9 (1964) 149–159.

    MATH  Google Scholar 

  15. O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In Proc. 30th Annual ACM Symposium on the Theory of Computing (1998) 1–9.

    Google Scholar 

  16. O. Goldreich, S. Goldwasser and S. Halevi. Collision-free hashing from lattice problems. 1996. Available as TR96-042 from Electronic Colloquium on Computational Complexity at http://www.eccc.uni-trier.de/eccc/.

  17. O. Goldreich, S. Goldwasser and S. Halevi. Eliminating decryption errors in the Ajtai-Dwork cryptosystem. Advances in Cryptology — CRYPTO '97 (editor B. Kaliski Jr.), Lecture Notes in Computer Science 1294 (Springer Verlag, 1997) 105–111.

    Chapter  Google Scholar 

  18. O. Goldreich, S. Goldwasser and S. Halevi. Public-key cryptosystems from lattice reduction problems. Advances in Cryptology — CRYPTO '97 (editor B. Kaliski Jr.), Lecture Notes in Computer Science 1294 (Springer Verlag, 1997) 112–131.

    Chapter  Google Scholar 

  19. D. J. Guan. Finding shortest paths in distributed loop networks. Inform. Proc. Letters 65 (1998) 255–260.

    Article  Google Scholar 

  20. J. C. Lagarias. The computational complexity of simultaneous diophantine approximation problems. In Proc. 23rd IEEE Symposium on Foundations of Computer Science (1982) 32–39.

    Google Scholar 

  21. F. T. Leighton. Introduction to parallel algorithms and architectures: Arrays, trees, hypercubes. M. Kaufmann, 1992.

    Google Scholar 

  22. A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen 261 (1982) 515–534.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Mans. Optimal Distributed algorithms in unlabeled tori and chordal rings. Journal on Parallel and Distributed Computing 46 (1997) 80–90.

    Article  MATH  Google Scholar 

  24. D. Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. In Proc. 39th IEEE Symposium on Foundations of Computer Science (1998) 92–98.

    Google Scholar 

  25. A. Paz and C. P. Schnorr. Approximating integer lattices by lattices with cyclic factor groups. Automata, Languages and Programming, 14th International Colloquium, Lecture Notes in Computer Science 267 (Springer-Verlag, 1987) 386–393.

    Google Scholar 

  26. R. Raz. Personal communication.

    Google Scholar 

  27. C. P. Schnorr. A hierarchy of polynomial time basis reduction algorithms. Theoretical Computer Science 53 (1987) 201–224.

    Article  MATH  MathSciNet  Google Scholar 

  28. J-P. Seifert and J. Blömer. On the complexity of computing short linearly independent vectors and short bases in a lattice. To appear in the proceedings of STOC 1999.

    Google Scholar 

  29. P. van Emde Boas. Another NP-complete partition problem and the complexity of computing short vectors in lattices. Technical Report 81-04, Mathematics Department, University of Amsterdam, 1981.

    Google Scholar 

  30. J. Žervonik and T. Pisanski. Computing the diameter in multi-loop networks. J. of Algorithms 14 (1993) 226–243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cai, JY., Havas, G., Mans, B., Nerurkar, A., Seifert, JP., Shparlinski, I. (1999). On Routing in Circulant Graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, Si., Tokuyama, T. (eds) Computing and Combinatorics. COCOON 1999. Lecture Notes in Computer Science, vol 1627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48686-0_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-48686-0_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66200-6

  • Online ISBN: 978-3-540-48686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics