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Abstract. CORSO, a coordination system for virtual shared memory,
allows bindings to different programming languages. Currently C, C++,
Java, VisualBasic, and Oracle’s Developer2000 are supported. We im-
plement an Ada binding to CORSO, thus opening the area of virtual
shared memory to the Ada world. Our Ada CORSO binding enhances
Ada with transaction-oriented, fault-tolerant, distributed objects in a
straight-forward way without having to extend the Ada language.

1 A Layered Approach

In distributed and heterogeneous environments some technique is desirable to
shield the attributes of distributed objects like location, replication, representa-
tion and persistency from the programmer. Different approaches exist and the
relation between them points to some kind of orthogonality. The most common
pattern seem to be the message passing versus virtual shared memory (VSM)
paradigm.

VSM neither intends to replace nor to exclude message passing architectures
like CORBA or DCOM. In contrast, VSM should be seen as an additional layer
providing enhanced mechanisms to the programmer.

Specifically in Ada’s case, a binding to a VSM increases functionality and
facilitates developing distributed applications, despite the fact that a variety
of Ada built-in features and annexes in the Ada standard are available. The
following issues are to mention:

— Communication, data sharing, and persistence has not to be implemented by
means of standard Ada but can be put under coordination of a VSM system
where several other languages and system architectures are glued together.

— The symmetric property of a VSM covers the actual needs of an application
well. Particular subtasks can be implemented by the best-suited language,
e.g. core development in Ada for safety critical parts and GUI development
using Java.

The remaining paper is organised as follows: Section 2 overviews shared ob-
ject paradigms. Section 3 presents concepts of CORSO, a virtual shared object
layer developed at the Institute of Computer Languages at the Technical Uni-
versity Vienna and now made available commercially by Tecco Coordination



Systems, Vienna. Technical aspects of CORSO are revealed in Section 4. Qur
Ada binding to CORSO is described in Section 5. Pros and cons of our binding
can be found in Section 6 where we also compare our binding to other language
bindings and conclude the paper.

There have been other implementations of VSM in Ada, namely of the Linda
tuple space (cf. [5—7]). All these implementations are stand-alone Ada imple-
mentations which lack the multi-language support of CORSO. In addition, the
features offered by Linda are only a subset of CORSO’s functionality.

2 Shared Objects

For the communication and synchronisation of distributed systems there exist
two paradigms: Message Passing versus a Virtual Shared Memory.

2.1 Message Passing
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Fig. 1. Message Passing Paradigm

The classical and commercially wide-spread approach is the message passing
paradigm. Processes communicate through the explicit (a-)synchronous send-
ing and receiving of messages. The remote procedure call (RPC) is a two-way
communication. The highest abstraction of the message passing paradigm are
distributed object systems like CORBA and DCOM, where object methods can
be invoked at remote sites which also results in a two-way communication pat-
tern. Ada’s Distributed Systems Annex (see [4]) also favours message passing.
Application programs need to be aware of message sending or remote service in-
vocation which means that e.g. fault tolerance has to be implemented explicitely
into each distributed application. Adding and/or removing sites from the net-
work of the distributed application has also to be considered explicitely
Moreover, such systems do not cache data fields locally which makes data
field access expensive, because it requires an expensive remote procedure call.



Even if the same data fields have been used before by a client or by other clients
at the same site, they must be fetched again. Because of the lack of replication
and caching support, hierarchical client/server structures are built, although,
they bear the disadvantage of a bottleneck w.r.t. performance and availability.

2.2 Virtual Shared Memory

Virtual shared memory offers a conceptually higher level of abstraction than
message passing. It provides the vision of a common shared object space to
which all participating, distributed and parallel executing processes have a con-
sistent view. The shared data objects are used for communication between and
synchronisation of parallel and distributed processes. VSM extends local memory
to the memories of all sites where processes are running. This approach natu-
rally hides heterogenous parts of the network from the programmer. Shared data
objects relieve the application programmer from caching and replication issues.
They allow the design of symmetric application architectures, thus avoiding the
client/server bottleneck.
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Fig. 2. Virtual Shared Memory Paradigm

Virtual shared memory is a new technology that goes beyond the possibilities
offered by message passing. Its advantages concerning its conceptually higher ab-
straction of the underlying hardware, and its advantages concerning caching and
replication have intensively been discussed in scientific literature (see e.g. [1-3]).
An obvious tendency towards virtual shared memory replacing or accompanying
client/server technology can be observed.



3 CORSO concepts

CORSO is a layered software component for the development of robust and par-
allel applications that supports the virtual shared memory paradigm. It has been
developed at the Institute of Computer Languages at the Technical University
Vienna and now commercially made available by Tecco Coordination Systems,
Vienna. The granularity of sharing are data objects instead of entire memory
pages, which makes CORSO suitable for all different kinds of distributed appli-
cation scenarios. The shared objects serve for the communication and synchro-
nisation between the parallel, concurrent and distributed processes.

CORSO is not only a pure memory model. It also supports complex coor-
dination patterns on the shared objects through an advanced transaction and
process model. Transactions serve to coordinate accesses to shared objects and to
make shared objects persistent. Processes are used to reason about concurrency
and parallelism and define the checkpoints for recovery.

CORSO meets the following requirements posed by the heterogeneity of dis-
tributed applications: It shields location, migration, replication, access, transac-
tion, failure, representation, and persistency requirements from the programmer.
Note that transaction transparency refers to transactions for the coordination
of communication and synchronisation patterns that arise through concurrent
accesses of multiple users and processes to the shared data objects. In con-
trast, in CORBA the notion of transactions refers to transactions at application
level, where for example existing two-phase-commit components are controlled.
CORSO transactions can also be used to control existing two-phase-commit com-
ponents in that they control proxy objects reflecting the data and actions to be
taken by the components. This way, CORSO transactions can be used to control
database components in a highly flexible way.

CORSO supports object-oriented component programming through language
bindings to C, C++, Java, Visual Basic, Oracle’s Developer 2000, and Ada. The
concept of component reuse can be fully exploited.

CORSO is an alternative technology for implementing distributed systems,
although, it can also be used to enhance existing client/server technologies.

4 Technical Aspects of CORSO

4.1 CORSO Architecture

A distributed CORSO application consists of local software systems (LSYS) on
which application processes are running. These application processes can use
the functionality offered by CORSO and are termed CORSO processes. They
are written in one of the programming languages, to which CORSO supports
language bindings. A programming language ”L.” extended by CORSO features
is termed ”L&Co” which stands for ”L plus Coordination”. Currently, C&Co,
C++&Co, Java&Co, VisualBasic&Co and Developer2000&Co are supported.
The language bindings come in form of CORSO language libraries/classes. We
are adding Ada&Co to the above list.



4.2 Interface Definition Language (IDL)

CORSO objects can be shared between different language paradigms across het-
erogeneous platforms that may differ in their representation of data. To make
sure that data are understood correctly at each site, internally an interface defi-
nition language (IDL) is used. The Coordination Kernel automatically interprets
and converts all information it receives from other Coordination Kernels. If a
LSYS connects to a Coordination Kernel from a remote site that uses other data
type formats, it also automatically converts these data. Application programs
are thus portable across all platforms.

Depending on the capabilities of the host language, the employment of the
IDL is more or less visible for the programmer. For example, in Java&Co un-
/marshalling is done completely automatically so that the existence of the IDL
is not evident at all, whereas in C&Co, the marshalling and unmarshalling is
done via format commands. The IDL supports data terms of the following basic

types:

— Integer: 32-bit integer value.

— Character: 8-bit byte value.

— String: O-terminated character string,.

— Raw: character string that may contain also the 0-character.

— Object identification (OID): unique reference to an object in the VSM. Point-
ers in local memory are generalised to OIDs.

— Structure: data structure that optionally may be given a name and that is
composed of n members. Each member is an IDL-term.

— Stream: data type that is in particular useful for communication purposes.
Internally it is a structure consisting of 2 components. The first component
is termed head and the second one is termed tail. The head is of any IDL
type and contains the user data. A single OID in the tail part acts as link to
the next element in the stream. Streams can be conceptually seen as infinite
coordination structures that are useful for communicating objects from a
producer to a consumer in an obvious "UNIX pipe”-like way.

4.3 Object Sharing

The IDL is used to access and manipulate CORSO objects. Since these ob-
jects are usually cached—which is a big performance gain over simple two-way
communication—the transaction concept ensures consistency with global virtual
shared memory. Arbitrary communication patterns can be defined by selecting
the proper coordination data structures composed of shared and nested objects.
Different caching strategies are provided which may be selected on a per-object
basis depending on the actual access frequency. For example if an object which
is rarely written has been (partially) changed, it is automatically propagated to
the cache of all current readers.

A variant of CORSO transactions are subtransactions which allow nesting
of transactions. Every distributed task can be put under transaction control



according to the ACID properties (atomicity, consistency, isolation, durability).
Instead of dealing with a big single transaction which may fail or not, one can
subdivide it into several subtransactions. The transaction scenario can be spread
over several sites, where so called transaction dependent processes are responsible
for handling such remote subtransactions. A successful subtransaction is able to
provide its results independently of the success of all enclosing transactions. As
a consequence a normal rollback of an enclosing transaction is no longer feasible.
To guarantee atomicity of the transaction the effects of subtransactions must be
compensated at least in a semantic manner. For this purpose special compensate
actions can be defined.

Another aspect of transactions is synchronising CORSO processes. CORSO
styled interprocess communication is based on transactions upon shared ob-
jects in a symmetric kind. CORSO stream objects can be used to implement
a communication with properties similar to queues or pipes. Write operations
under transaction control in conjunction with synchronous reads are the main
constructs to obtain this kind of communication (comp. Section 5.4). CORSO
processes can also be used to simulate a remote procedure call: a shared object
incorporates input data, a method identification for the remote site, and the
result from the method invocation.

5 Ada Binding to CORSO

The primary task in implementing a binding to CORSO is to build a LSYS in
Ada. This task can be subdivided into

1. Declaring Ada-conforming IDL data types as can be found in Section 4.2.
2. Implementing marshalling and unmarshalling operations for these types*.
3. Providing an Ada interface to CORSO processes and transactions.

Task 1 is done by defining an abstract tagged CORSO base type, from which
the IDL types are derived.

Task 2 is done by implementing read and write attributes for all IDL types.
Currently we do not support input and output attributes because the CORSO
IDL types are elementary types only which do not profit from Ada’s higher
representation issues of input and output attributes. Details can be found in
Section 5.1.

We implement Task 3 via a “thin binding” which is based on C&Co and is
generated semi-automatically with help of the c2ada-tool developed by Inter-
metrics. This however is not directly presented to the programmer.

5.1 IDL Types and Marshalling

This section describes how the CORSO IDL types are implemented in the Ada
binding. How this is done is shown by one example, the type CoKeInt. For the
other types listed in Section 4.2 the binding is similar. Package CoKe shown in

* These operations are needed to convert IDL types to their “internal” representation.



Program 1 Package Coke

package CoKe is
type Comm_type is (const, var, stream);
end Coke;

Program 1 gives the root of the Ada CoKe library tree and also contains the
declaration of the communication types of CORSO objects. These are const,
which means the object is written only once, but can be read arbitrarily often,
var, which means it can be read and written arbitrarily often, and stream,
which allows for communicating objects from a producer to a consumer in
an obvious "UNIX pipe”-like way. Program 2 shows the declaration of type

Program 2 Package Coke.Base.Attribute
with Ada.Streams, CoKe.Base.Streams;
package CoKe.Base.Attribute is
type CoKeBaseAttribute is abstract new CokeBase with private;
private
type CoKeBaseAttribute is abstract new CokeBase with
record
Strm: CoKe.Base.Streams.CoKe_Stream_AD;
end record;
procedure Read(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: out CoKeBaseAttribute);
for CoKeBaseAttribute’Read use Read;
procedure Write(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: in CoKeBaseAttribute);
for CoKeBaseAttribute’Write use Write;
end CoKe.Base.Attribute;

CoKeBaseAttribute which forms the base type of all IDL types. Note the pro-
cedures Read and Write in the private part. These and similar procedures defined
for the other IDL types perform marshalling and unmarshalling, such that the
user of the Ada binding to CORSO can do reading from and writing to the
shared memory pool via Ada’s read and write attributes in a fairly transparent
way.

Package CoKe.Base.Streams contains the declaration of type CoKe_Stream
and some internals of the Ada binding, which is not shown explicitely.

Program 3 shows the generic package for creating objects of type CoKelnt,
the type used for handling integer types in CORSO. Our current binding does not
support operations for IDL types. Thus they can only be used for communication
purposes. A later release, however, will provide suitable operations for all IDL
types.

Package Shared shown in Program 4 is used for building instances of objects
being in the shared memory pool. Objects of type shared can be equipped
with an OID. In contrast to the Read and Write operations in Program 2 the



Program 3 Package Coke.Base.Attribute.CoKelnt

generic
type Int is range <>;
package CoKe.Base.Attribute.CoKelnt is
type CoKelnt is new CoKeBaseAttribute with private;
procedure Int_to_CoKelnt(from: Int; to: out Cokelnt);
function CoKelnt_to_Int(from: Cokelnt) return Int;
private
type CoKelnt is new CoKeBaseAttribute with
record
I: Int;
end record,
procedure Read(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: out CoKelnt);
for CoKelnt’Read use Read;
procedure Write(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: in CoKelnt);
for CoKelnt’Write use Write;
end CoKe.Base.Attribute.CoKelnt;

Program 4 Package Shared

with Ada.Streams, CoKe.Base.Attribute, CoKe.Base.Attribute.CoKeQOid;
generic
type Base is new CoKe.Base.Attribute.CoKeBaseAttribute with private;
Comm _type: CoKe.Comm_type;
package Shared is
package Oid renames CoKe.Base.Attribute.CoKeOid;
type Shared is new Base with private;
procedure Set_Oid(
Obj: in out Shared;
the_Oid: 0id.CoKeOid := Oid.Create_0id);
function Get_Oid(Obj: Shared) return Oid.CoKeOid;
private
type Shared is new Base with
record
the_Oid: Oid.CoKeOid;
end record;
procedure Read(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: out Shared);
for Shared’Read use Read;
procedure Write(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: in Shared);
for Shared’Write use Write;
end Shared;




corresponding procedures in this package not only perform (un-)marshalling, but
they also read/write the corresponding objects from/to the shared memory pool,
where they are identified by their unique OID. The basic IDL type 0id is defined
in package CoKe.Base.Attribute.CoKe0id which is not explicitely shown here.

5.2 Transactions

Shared objects can be combined with transactions. This is again done using
standard object-oriented features of Ada, i.e., using generics and tagged types
(cf. Program 5). In general all transactions are put under control of the trans-

Program 5 Package Tx

with Ada.Streams, Shared, Transaction_Mgt;
generic
with package Some Shared is new Shared(<>);
package Tx is
type Txed is new Some_Shared.Shared with private;
procedure Set_Tx(
Obj: in out Txed;
the_Tx: Transaction-Mgt.Tx);
function Get_Tx(Obj: Txed) return Transaction_Mgt.Tx;
private
type Txed is new Some_Shared.Shared with
record
the_Tx: Transaction_Mgt.Tx;
end record;
procedure Read(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: out Txed);
for Txed’Read use Read;
procedure Write(
Stream: access Ada.Streams.Root_Stream_Type’CLASS;
Item: in Txed);
for Txed’Write use Write;
end Tx;

action manager in package Transaction_Mgt. This manager provides the basic
types and functionality to control transactions. By means of the generic package
Tx the transaction semantics can be attached to any shared object type. Access-
ing an object of this new type (using Read and Write operations) remains the
same, except of adding transaction properties to it.

To establish a transaction at first a transaction object has to be aquired from
the transaction manager using function Create_TX (as shown in Program 9
later). Procedure Set_Tx binds this newly opened transaction to the shared
object. Get_Tx is provided as counterpart to procedure Set_Tx for completeness
only.



5.3 The LSYS

In order to implement a CORSO application, one has to register the processes in
the LSYS. Our binding allows this to be done via package CoKe.Entries shown
in Program 6. All CORSO processes are in fact Ada procedures of the form

Program 6 Package CoKe.Entries
with CoKe.Base.Attribute;
package CoKe.Entries is
type Proc_Ptr is access
procedure(Param: CoKe.Base.Attribute.CoKeBaseAttribute’CLASS);
type CoKeBaseAttribute_AD is
access all CoKe.Base.Attribute.CoKeBaseAttribute’ CLASS;
procedure Add_CoKe_Entry(
Name: string;
Run: Proc_Ptr);
procedure Start_CoKe_Entry(
Name: string;
Param: CoKeBaseAttribute_AD);
end CoKe.Entries;

Proc_Ptr. The parameter Param can be used to pass arbitrarily complex data
structures using the IDL type CoKeStruct.

How these pieces fit together is shown in Section 5.4 where the well-known
producer /consumer problem is solved via the Ada CORSO Binding.

5.4 The Producer/Consumer Example

The procedures Producer and Consumer are given in Program 9 and 10, respec-
tively. The instance of CoKeInt used in Program 9 is depicted in Program 7,
equipping this type with a transaction is shown in Program 8.

Program 7 Package My_SharedCoKelnt

with Coke, My_CoKelnt, Shared;
package My_SharedCoKelnt is new Shared(My_CoKelnt.CokeInt,CoKe.stream);

Program 8 Package My_TxedSharedCoKelnt

with My_SharedCoKelnt, Tx;
package My_TxedSharedCoKelnt is new Tx(My_SharedCoKelnt);

Via calls to CoKe.Entries.Add_CoKe_Entry these procedures are registered
as CORSO processes. Before that, connection to the LSYS has been established
by a call to LSYSConnect. The procedures (CORSO processes) are then executed
by CreateIndependentProcess which is given the name-strings ”producer” and
” consumer” , respectively. In addition to that an identical OID is passed to both
processes, which identifies the shared object stream used for communication.



Program 9 Procedure Producer

with CoKe.Base.Attribute.CoKeOid, CoKe.Base.Streams, My_SharedCoKelnt,
My_TxedSharedCoKelnt, Transaction_Mgt;

use CoKe.Base.Attribute.CoKeOid, CoKe.Base.Streams, My_SharedCoKelnt,
My_TxedSharedCoKelnt, Transaction_Mgt;

procedure Producer(Param: CoKe.Base.Attribute.CoKeBaseAttribute’ CLASS)
is
data: My_TxedSharedCoKelnt.Txed;
CoKe_Strm: aliased CoKe_Stream;
0Oid: CoKeOid := CoKeOid(Param);
begin
Set_Oid(Shared(data), Oid); -- attach Oid we have got from Param to data
for i in 1..3 loop
Int_to_CoKelnt(from => i, to => data);

declare
topTx: Tx := Create_TX; -- create and open a transaction
begin
Set_Tx(data,topTx); -- attach transaction to data
loop
Txed"WRITE(CoKe_Strm’access, data); -- write data to VSM
exit when Commit(topTx); -- exit if everything is okay
Cancel(topTx); -- cancel transaction if something went wrong
end loop;
end;
end loop;
Process_Commit; -- exit tn commit state

end Producer;

Program 10 Procedure Consumer

with CoKe.Base.Attribute.CoKeOid, CoKe.Base.Streams, My_SharedCoKelnt,
Text 10;

use CoKe.Base.Attribute.CoKeOid, CoKe.Base.Streams, My_Shared CoKelnt;

procedure Consumer(Param: CoKe.Base.Attribute.CoKeBaseAttribute’CLASS)
is
data: shared;
CoKe_Strm: aliased CoKe_Stream;
0Oid: CoKeOid := CoKeOid(Param);
begin
Set_Oid(Shared(data), Oid); -- attach Oid we have got from Param to data
for iin 1..3 loop
Shared’READ(CoKe_Strm’access, data); -- read data from VSM
Text_10.Put_Line(integer IMAGE(CoKelnt_to_Int(data)));
end loop;
Process_Commit; -- exit tn commit state
end Consumer;




The calls to CreateIndependentProcess can even be done from programs not
written in Ada. Note that the two procedures Producer and Consumer may
reside on different sites in the network, too. Procedure Process_Commit serves
as indication for the transaction manager how to proceed with the transaction.

6 Discussion and Conclusion

There is only one disadvantage of our Ada CORSO binding, namely that Ada’s
tasks cannot be used directly as CORSO processes. Nevertheless tasks can be
used freely within a CORSO process. By the way, Java&Co suffers from the
same problem.

We have found that Ada’s read and write attributes are very useful to incor-
porate access to objects in a shared memory pool.

Transactions have not been considered in the Ada Reference Manual until
now. Our Ada CORSO binding enhances Ada with transaction-oriented, fault-
tolerant, distributed objects in a straight-forward way without having to extend
the Ada language.

Compared to other language bindings, we see that Ada’s generics and tagged
types provide an excellent means to correctly model the interdependency be-
tween IDL types, the shared object paradigm, and transactions. For example
Java& Co lacks multiple inheritance and thus cannot model this interdependency
in an accurate way. C++&Co heavily uses multiple inheritance for this purpose
but is less readable than Ada (at least for an Ada person).

The CORSO layer supports a comprehensive programming model for dis-
tributed, parallel and concurrent programming. It supports the virtual shared
memory approach and in addition an advanced transaction/process model. Pro-
viding an Ada binding to CORSO opens the area of virtual shared memory to
the Ada world.
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