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Abstract. We define sequent-style calculi for nominal tense logics char-
acterized by classes of modal frames that are first-order definable by cer-
tain ITP-formulae and II9-formulae. The calculi are based on d’Agostino
and Mondadori’s calculus KE and therefore they admit a restricted cut-
rule that is not eliminable. A nice computational property of the restric-
tion is, for instance, that at any stage of the proof, only a finite number of
potential cut-formulae needs to be taken under consideration. Although
restrictions on the proof search (preserving completeness) are given in
the paper and most of them are theoretically appealing, the use of those
calculi for mechanization is however doubtful. Indeed, we present sequent
calculi for fragments of classical logic that are syntactic variants of the
sequent calculi for the nominal tense logics.

1 Introduction

Background. The nominal tense logics are extensions of Prior tense logics
(see e.g. [Pri57,RU71]) by adding nominals (also called names) to the language
(see e.g. [Bla93]). Nominals are understood as atomic propositions that hold
true in a unique world of the Kripke-style models. The nominal tense logics
are quite expressive since not only do they extend the standard (mono)modal
logics by adding a past operator (giving the tense flavour) but they also admit
nominals in the language. In spite of the analogy between nominals (in the
object language of the logic) and prefizes, also called labels, used in various proof
systems for modal logics (see e.g. [Fit83,Wal90]), no proof systems for nominal
tense logics using this conceptual similarity exist. This is all the more surprising
because during the last years, prefixed calculi have regained some interest (see
e.g. [Ogn94,Mas94,Gov95,Rus96,Gab96, BMV97,BGI7]).

Although designing general frameworks defining proof systems for modal
logics is a fundamental task, other works deal with the difficult problem of im-
proving significantly the mechanization of logics by finding refined properties,
mostly proof-theoretical, that provide better complexity bounds or that allow
the design of efficient decision procedures (see e.g. [Hud96, GHM98,Heu98]). We
claim that the latter approach is the most promising for mechanization. As wit-
ness, the present paper illustrates that for many nominal tense logics, it is not so
difficult to find a general framework for mechanization as long as only qualitative
properties (soundness, completeness, ...) are investigated.

Our contribution. For any nominal tense logic £ from the class C g defined



in this paper, we define a sequent-style calculus, say GL, that is based on the
sequent-style counterpart of the calculus KE defined in [dM94]. Our calculi admit
a cut rule satisfying the following nice computational properties. When reading
the proof upwards, at any stage of the construction of the proof,

(CR1) the number of potential cut-formulae is linear in the size of the part
of the proof constructed so far;

(CR2) any potential cut-formula can be computed in linear-time in the size
of the part of the proof constructed so far.

(CR3) the size of any potential cut-formula is linear in the size of the part
of the proof constructed so far (consequence of (CR2));

(CR1) means for instance that when growing the proofs upwards, if one decides
to apply the cut rule at some stage, only a limited amount of candidate cut for-
mulae could be useful to end the construction of the proof. The non-determinism
of the cut rule is therefore weakened. Analycity is however not guaranteed be-
cause new nominals shall be introduced during the construction of the proofs.
It is known (see e.g. [Boo84,dM94]) that cut-elimination is not always a guaran-
tee for (efficient) mechanization. The search for some analytic cut rule is often
desirable and the calculi defined in this paper follow that line of research. Fur-
thermore, we take advantage of the presence of nominals in the modal language
to use “implicit prefixes” in the proof systems. As far as we know, the idea of
using such implicit prefixes when nominals are involved is due to Konikowska
[Kon97]. In [Kon97], Rasiowa-Sikorski-style calculi for relative similarity logics
are defined. Herein, we generalize the use of implicit prefixes to a class of nom-
inal tense logics and we introduce various restrictions on the applications of
the rules while preserving completeness. Although, for some particular logics,
decision procedures can be obtained using the restrictions, in the general case,
the design of decision procedures (when possible) is not straightforward from
our calculi. It is also fair to state that the paper [Kon97] has been a source of
inspiration in order to develop some of the ideas present in this paper.

In the last part of the paper, we define sequent-style calculi (based on KEQ
[d’A90]), say GFOL,, for fragments of the classical logic such that the calculi GL
and GFOL, can be clearly viewed as syntactic variants. This allows to observe
that GL is first-order in nature and to explain why it is so. Moreover, it clearly
raises the questions about the relevancy of defining calculi within a general proof-
theoretical framework when mechanization is wanted. Apart from the technical
results of the paper, we wish to formally illustrate why numerous calculi for
modal logics can be viewed as an encoding into classical logic. Although this
fact is widely recognized for particular systems, we want here to propose a more
general picture since the class C my s quite large.

Related work. Most of the proof systems designed for nominals tense logics
are Hilbert-style ones [Bla93]. Calculi for (non nominal) tense logics can be for
instance found in [RU71,Kra96,Heu98 BG98] but these calculi do not treat the
nominal case and they do not consider so large a class of logics as C - In

[DGY9], display calculi for nominal tense logics have been defined and cut is
not only eliminable but also a strong normalization theorem is established. For
all the calculi designed in the present paper, cut (or equivalently the principle
of bivalence) is not eliminable. Furthermore, the sequent calculi defined in the
present paper are based on a completely different approach: we rather use the
nominals as “implicit prefixes”. In that sense, our calculi are explicit systems



following [Gor99] but without introducing any extra proof-theoretical device
that does not belong to the object modal language. Furthermore, the calculi
defined in this paper does not differ very much in spirit with those defined in
[Rus96,BMV98]. Indeed, we associate syntactically rules to formulas defining
relational theories. However, we are able to capture all the conditions on frames
for the properly displayable modal logics defined in [Kra96]. We wish also to
thank one of the referees for pointing us to [Bla98,Tza99] where tableau-style
calculi having technical similarities with ours have been defined.

2 Nominal tense logics

Given a countably infinite set' Forg = {py,p;,Pa;--.} Of atomic propositions
and a countably infinite set For)’ = {ig,i1,...} of names, the formulas ¢ €
NTL(G, H) are inductively defined as follows: ¢ == p, | ix | &1 A P2 |
$1 = ¢2 | —¢ | G¢ | H¢ for p, € Forg and i € For). Standard
abbreviations include <, F, P. We write |¢| to denote the length of the formula
¢ for some (unspecified) succinct encoding. An occurrence of the formula v is

said to be a subformula of the formula ¢ of secondary disjunctive force & 1 is
a subformula of ¢ and v is the immediate subformula either of a conjunction in
¢ of negative polarity or of an implication in ¢ of positive polarity. We use here
the usual notion of polarity. For instance, p, occurs negatively in (p; Ap,) = p;-
A modal frame F = (W, R) is a pair such that W is a non-empty set and R is

def

a binary relation on W. We use R(w) = {v € W : (w,v) € R}. A model M
is a structure M = (W, R, m) such that (W, R) is a frame and m is a mapping
m : ForgUFor) — P(W) where for any i € For), m(i) is a singleton. Let M =
(W, R,m) be a model and w € W. The formula ¢ is satisfied by the world w € W

def

in M & M,w | ¢ where the satisfaction relation = is inductively defined as
follows: M,w =p & w € m(p), for every p € Forg UFor); M,w = Gp &
for every w' € R(w), M,w' = ¢; M,w = Hp & for every w' € R~ (w),
M, w' = ¢ (R is the converse of R). We omit the standard conditions for the
propositional connectives. A formula ¢ is true in a model M (written M = ¢)
& for every w € W, M,w E ¢. A formula ¢ is true in a frame F (written
FE=9) & ¢ is true in every model based on F. In what follows, by a logic L we
understand a pair (NTL(H, G), C) where C is a non-empty class of modal frames. A
formula ¢ is said to be L-valid & ¢ is true in all the models based on the frames
of C. A formula ¢ is said to be L-satisfiable & —¢ is not L-valid. Now, we define
the class C 3 of nominal tense logics announced in the introduction. First, we

need to present preliminary definitions. Here, we consider the fragment of FOL
built using the following vocabulary: T is the verum logical constant; {Py : k € w}
is a countable set of unary predicate symbols; R and = (identity) are the unique

! The metavariables for atomic propositions [resp. for nominals] are p,q,... [resp.
i, j,...]. When p [resp. i] is subscripted by some natural number, we mean exactly
the members from Forg [resp. from Fory' |.



binary predicate symbols; {ay, : k € w} is a countable set? of individual constants;
{x¢ : k € w}U{y, : k € w} is a countable set of individual variables. A II}-
formula is a FOL-formula of the form Vx; ...Vx, ¢ where ¢ is quantifier-free and
n>1. A Hg—formula is a FOL-formula of the form Vx;...Vx, dy,...3y,, ¢
where ¢ is quantifier-free and n,m > 1. A restricted I19-formula v is defined
here as a FOL-formula of the form Vx; ...Vx, Jy,...3y,, ($1 = ¢2) where

1. 1 is in prenex normal form (PNF) and ¢1 = ¢4 is precisely its matriz;

2. ¢1 and ¢o are formulas built upon the binary predicate symbols R, =, the
truth logical constant T and from {xi,...,%p,¥y,...,¥,,} (no individual
constant occurs in ¢ = ¢2); n > 1; m > 0;

3. ¢ is either the logical constant T or a finite conjunction of literals (atomic
formulae or negated atomic formulae) where no y, occurs in ¢1;

4. ¢ is a disjunction of conjunctions of literals.

def

A nominal tense logic £ = (NTL(G, H),C) is an element of the class Crp <

there is a set® @ of restricted I19-formulae such that C is exactly the set of
frames satisfying each formula from @ (in the first-order sense). The class C of
modal frames is also said to be Cpo-definable. The class Cpg is quite large. By
manipulation at the first-order level one can show:

1. For any closed (unrestricted) IT9-formula ¢ = Vx; ...Vx, 3y, ...3y,, (61 =
¢2) in PNF such that the only variables in ¢; belong to {x1,...,%,}, there
exists a finite conjunction of restricted I13-formulae equivalent to .

2. Every primitive first-order formula in the sense of [Kra96] is logically equiv-
alent to a restricted I19-formula.

3. There exist C Hg—deﬁnable classes of frames that contain only infinite frames

(see e.g. [Bla93]).

Expressivity of the restricted I19-formulae is also well-illustrated by the fact
that not only are there Cpg-definable classes of frames that are not modally
definable but also all the first-order classes of frames defined by a conjunction
of conditions from Figure 2 and Figure 3 in [Gor99] are Cpyo-definable. All the
first-order definable classes of frames considered in [Rus96,CFdCGH97] are C my-
definable and Cpyg contains all the modal logics (in their nominal tense version)
defined with Horn clauses from [BMV98|. Furthermore, for any nominal tense
logic £ = (NTL(G, H),C) such that C is first-order definable by a finite set & of
restricted IT9-formulae, it is known that the £-validity problem can be translated
into FOL-validity (using [Ben83,GG93]). However, there is no guarantee that £
admits a proof system (based on KE for instance) such that the cut rule satisfies
the conditions (CR1), (CR2) and (CR3) -see Section 1. In the present paper,
the delimitations of the class C it has been designed in such a way that the
sequent calculi (based on KE) admit a cut-rule satisfying the computationnally
nice conditions (CR1), (CR2) and (CR3) -other restrictions on the applications
of various rules shall be introduced. Those criteria distinguish our work from

2 The metavariables for individual constants [resp. for individual variables] are a, b, ...
[resp. x,7,...]. When a [resp. x and y| are subscripted by some natural numbers we
mean exactly the members from {aj : k € w} [resp. from {x; : k € w}U{y, : k € w}].

3 & should be understood as a (possibly infinite) conjunction.



the standard translation into FOL but other criteria are of course possible as
done in [BMV97, Section 4] where enlighting analyses about the behaviour of
the falsum 1 can be found. To conclude this section, we warn the reader that
although C my s undoubtly a very large class, we ignore whether it contains any

logic useful in practice.

3 Sequent-style calculi for nominal tense logics

In this section, £ denotes a nominal tense logic (NTL(G, H),C) in Cjzp character-
ized by the set @ of restricted II9-formulae.

3.1 Preliminaries

Most of the prefixed tableaux calculi for modal logics use prefixes as a compact
way to represent sets of positive literals in first-order logic. It partly explains why
numerous calculi can be viewed as a “clever translation”? into classical logic (see
e.g. [Gen92]). For instance, in [Fit83], a prefix is defined as a (non-empty) se-
quence of natural numbers. A sequence i ...%, € w* (n > 1) can be understood
(for example for the modal logic S4) as the set® {R(a;, i,,, aj,..i,,):1<m<
m’ < n} of positive literals (the a,’s are individual constants). It is therefore
inaccurate to believe that since prefixes can be interpreted at the metalevel by
worlds, then prefixes and nominals have the same expressive power. Actually,
the prefixes are more expressive since the nominals do not contain any infor-
mation about the accessibility relation. However, formulas involving nominals
can encode first-order literals, positive and negative ones as shown below. For
any model M = (W, R,m), it is easy to show that i; = G-iy is true in M
iff (m(i1),m(i2)) € R. So, i1 = G—iz can be used as a negative literal. What
seems to be lost here, is a conciseness of the representation: each literal is repre-
sented by one nominal tense formula of the same length (modulo some constant)
and it is the approach chosen in the calculi defined in Section 3.2. However,
since we are dealing with logics whose satisfiability is NP-hard, the following
argument shows that conciseness is a secondary issue for mechanization. Indeed,
let 41 ...4, be a (non-empty) sequence of natural numbers representing a set X
of first-order positive literals subset of {R(a;,...i,,,ai,...i, ) :m,m’ € {1,...,n}}
(it depends on the modal logic we consider but let us treat the general case).
The length of 41 .. .4,, say |iy ...y, is naturally defined as the sum of the length
(in binary writing) of each natural number occurring in i ...i,. For instance,
i1 ...in| > n and card(X) < n?. Let ¢x be the following nominal tense formula
/\R(ailA an. . )EX iiy.i, = 7G—i4,. , that encodes the prefix iy ...4, (or

equivalently that encodes X). The generalized conjunction A should be here
understood as an abbreviation for a certain amount of binary conjunctions. |¢x |
is in O(Ji1 ...i,|3) and therefore, if a formula ¢ has a proof IT with the “concise
representation” of the positive literals, then ¢ has a proof II’ with the repre-
sentation of literals “in extension” where |II’| is in O(|II|3). The length of the

i

4 [BGI7] is one of the rare papers where such a relationship is explicitly recognized.

5 Since w* and w have the same cardinality, without any loss of generality, we can
assume that the individual constants and the nominals are respectively of the form
a, and i, where o € w*.



proof I, denoted |II|, is defined as the number of nodes in the tree. In a more
general setting, it would be necessary to use a more refined definition of proof
complexity which takes into account the length of proof steps. Since the calculi
involved in the paper use a very restricted cut-rule (the size of the cut-formula
is linear in the size of the conclusion), our definition is sufficient for our needs.
As no subexponential algorithm for any NP-hard problem is known, such a cu-
bic overhead (|¢x| € O(Ji1...i,|3)) is not so significant (even in the worst-case)
when dealing with NP-hard problems (and a fortiori with PSPACE-hard prob-
lems). Of course, this is highly significant to establish tight complexity upper
bounds as done in [Hud96]. In [Kri63,CFACGHI7] and [Heu98, Chapter 4], some
of the graphical representations of the sets of (positive) first-order literals enjoy
some conciseness property comparable to the one for prefixes.

3.2 Definition

The basic syntactic objects in the calculus are sequents. A sequent is an expres-
sion of the form I' H A where I" and A are finite multisets of nominal tense
formulae, i.e. unordered collections of formulae that may contain several occur-
rences of the same formula. We write ¢ for {¢} and let “” denote the multiset
union. The length of the sequent I" F A, denoted |I" + A|, is the sum of the
length of each element from I A. The sequent calculus, say GL, for the logic
L contains the rules in Figures 1-3. Other rules depending on & are presented
when needed. In Figure 2, the rules (refl), (sym) and (trans) encode properties
of identity (reflexivity, symmetry and transitivity). Similarly, the rules (sub )
and (F sub) (“sub” stands for substitution) encode that identical terms can be
substituted. The (start)-rule has a special status since in any proof, this rule
is applied exactly once, at the root (with the forthcoming restriction (Rsiqart))-
This initiates the introduction of nominals that behave as prefixes. Observe that
i = ¢ is L-valid iff ¢ is L-valid when i does not occur in ¢.

Fi=o¢

I''i = ¢+ A/i= 1 (initial sequents) o (start)

For the (start)-rule, i does not occur in ¢.

Fig. 1. Initial sequents and the rule (start)

We continue here the definition of GL. Let o be a finite sequence of formulas
of the form i = j, i = -G—j, i = —j, i = G—j. Those formulae precisely “en-
codes” positive and negative first-order literals whose (binary) predicate symbol
is either = or R. We define the sequent (I'  A) ® o inductively on the length
of o as follows (A denotes the empty string and ® is simply an operator that
inserts formulae in sequents):

—(FTFA)RNETF A
~(MFA@GE=§)0dE(Ni=>jk AR
~(MFA@EA=Gj)o = (Ni=>G-jFA)d;



Ii=o¢kA I'FAi=¢ -b) Ii= ¢k Ai= ¢ (o)
TFAi=—¢ " ' T,i= pFA " I'E A= (¢ = ¢2)

I'N'i=>¢1,i= g2 A I'FAi= ¢1,i= ¢
: , (= : : (=F)2
F,1:>¢1,1:>(¢1:>¢2)}_A F,1:>((}51:>¢)2)|_A,1:>¢2
Ni=o¢kAi= Ni=4yrAi=
DIZ0R232Y oy, TEZVERIZO 4,
Ii=o¢k Ai= (¢A¥) Ni=vy+-Ai= (6AVY)
i i FA
,1.:>¢71:>1/J (A F)
Ii=(pAy)E A
Ni=GyY,j=vFAi=G-j I'FAj=v,i=G-j
e (el 1202200 (g
INi=Gytk Ai= G-j I'-Ai= Gy
I'j= Hy,i=>vHFAi=> GHj, I'FAj=1v,j=G-i
szwl w.l S LN J le L em
I'j=HyFAi= G-j I'Ai= Hvy
in (F H) and (+ G), j does not occur in the conclusion
rNi=ji=ji=>itkrA
i=j,i /_]1 i (NOM= 1)
rNi=ji=jrA
Ni=ykAi =i=i
’1 1/) ?1 /1/)71 1 (# NOM:)
Ni=yk-Ai=vY
ri=Gy,i=G-i'kAi =
71 1/)71 1., 71 w(NOMcl_)
Ni=GykAi =y
Ni=jkAi = G-j,i = G-i
Ni=jkAi =G-j
Ii= Hy,i’ = G-ik Ai' =
71 w71 1-/ 71 /l/}(NOMH'_)
Ii= Hpr A =1
Ii=jkAi = H-j,i= G-’
2= S = > (- NOMp)
INi=jkAi = H-j
ri=ik A Ij=ii=jkFA INi=%xi=jj=kkFA
—— (refl) —— (sym) —
I'HA Ni=jkFA INi=jj=%kFA
Ii i i, FA Ni=jkAi=¢,j=
i=¢i=j,]=¢ (sub 1) i=] i=¢,] ¢(Fsub)

Ni=jj=o¢FA Ni=jkFAj=¢

rj=j,i=G-ji=G-jFA

- (sub' 1)
I''j=j,i=GjFA

Ij=jitrAi=Gji= Gy

S S =2 ()
L j= 3 FAL= GAj

Fig. 2. Common core of (introduction) rules in GL

(trans)




rFAi=¢ Li=ykA
I'cA

(PB)

Fig. 3. Principle of bivalence

~TFAREA=> )0 ETFALI= ) R0,
~(MFA®GE=-Gj)o = (TFAL=Gj) R0

Let ¢ be a restricted II9-formula of the form

Vxi,. .., %y Jyq, - ,yms(l)Pol(zio, Z%’O) AL A sf)(o)Pé(o)(zifg), Zé(,g)) =
\/?:1 Szlpil(z%,iv Z%z) AL A Sé(z)Pé(Z)(Zi(,?a Zé(z))
where

1. each P/ belongs to {=,R}; each s/ belongs to {\, ~};

2. each 25’0 (1<a<2,1<p5<I(0) belongs to {x1,...,%n};

3. eachz , (1<a<2,1<i<k1<pB<I(i))belongsto {x1,...,%n, ¥1,-- -,V )-
We shall now define the (1)-rule that mimicks the syntactic structure of . For
any i,j € For), for any s,s’ € {\,—} such that s # s’ and for any P € {=R},
let us define the formula Y'(sP, i, j) as follows:

..y def i=>S/G—\jifP:R;
X(sP1,3) = {i = sj otherwise.

Roughly speaking, a literal sP(xg,xx ) in ¢ shall be encoded by X(sP, ik, ix).
For any formula ¢ in @, we add the (¢)-rule in Figure 4 to GL. The conditions

(MFA)@or ... (I'FA)® o "
(F = A) ® oo
1. 00 = Z(sbP3, il 0,380),- .., D(st O P, 140 159));

2. for 1 <u<k, o0 =002(54P0,ilu,idn)---- E(SL(IOP}L(“), illiz), ilz(,z))§

3. for any o, € {1,2}, ¢,¢' € {1,...,k}, 7€ {1,....1(¢)} and »' € {1,....1(¢")},
(a) Z(Z,q = Zgl,q/ iff i;q = i;',q/;

(b) if 25,4 is equal to some y,, then iy, , does not occur in the conclusion.

Fig. 4. (¢p)-rule for ¢ € &

1. and 2. in Figure 4 relate the (¢)-rule with the structure of ¢ (without taking
care of the variables). Condition 3.(a) roughly states that each variable occur-
ring in ¢ corresponds to a unique nominal in the application of the (¢)-rule.



Condition 3.(b) states that the nominals corresponding to the y,’s are new on
the branch. The (¢)-rule can be viewed as a generalization of the “p-rule” in
[Bal98] and of the “Horn relational rule” in [BMV97,BMV98|. More generally,
the ()-rules merely encodes the logical consequence relation of the first-order
relational theory of £ (as also done in [Gen92]). Furthermore, since the definition
of the (¢)-rules is purely syntactic, it is not guaranteed that for logics £, £’ in
C 19 characterized by @ and &' respectively, if @ and @’ define the same class of

frames, then GL£ and GL' have exactly the same rules.

def

Example 1. Let L = (NTL(G, H),Cx) be the nominal tense logic such that

def

& = {Vx,y R(x,y) = —(x=y),Vx,y ~(x=y) = R(x,y)}. The tense operators G
and H are actually equivalent and G is merely the difference modal operator
[#]. The rules of GL, are those in Figures 1-3 plus the rules defined from &:

'cAi=ji=Gj I'FAi=Gji=]j
' A L= G-j 't Ai=j

A proof IT in GL is a tree whose nodes are labelled by sequents satisfying the
following conditions: the topmost sequents of IT are initial sequents and every
sequent of I, except the lowest one is an upper sequent of an inference whose

lower sequent is also in I7. A formula ¢ is provable in GL % there is a proof
IT in GL such that F ¢ is the lowest sequent of IT.

3.3 Soundness, restrictions and completeness

Lemma 1. Let I' = A be a sequent provable in GL. Then, for any L-model M,
for all«p € T, ¢ is true in M implies that ¢’ is true in M for some ¢' € A.

The proof is by induction on the length of the derivation. It is more standard
to prove soundness by using the notion of satisfiability in a model rather than
the notion of truth in a model as done here.

Theorem 1. If ¢ € NTL(G, H) is provable in GL, then ¢ is L-valid.

The system GL is not minimal since for instance, the (F NOM=)-rule, the
(NOMpy F)-rule and the (NOMg F)-rule are derivable from the rest of GL.
These rules are included for the sake of symmetry. The system GL is considerably
improved for the mechanization by imposing the restrictions (Rinit), (Rstart),
(R=)7 (Rnofrenaming)z (RPB)7 (RNO]\/I)a (Rwitness)7 (Rsub’) and (R'LZ)) for '(/] P
defined below. In the rest of the paper, by GL, we mean the calculus with such

restrictions. First, any nominal j that occurs on a branch of a (possibly partial)

proof whose root is labeled by ¢ is a p-name (standing for “implicit prefix”) &

j has been placed on the branch by application of a rule that introduces new
nominals. The notion of p-names is similar to that of Skolem constants.

— (Rjnst) for the initial sequent is: any ¢’ occurring in I,i = v F Aji = ¢
is of the form j = 1" where j is a p-name, 1" is either a subformula of ¢
(syntactically) equal to an atomic proposition in the case when j = ¢ =
i = 1 or a p-name, or a nominal occurring in the root sequent - ¢ or a
formula of the form G—j’ with j’ a p-name.



— (Rstart) for the (start)-rule is: ¢ is not of the form j = ¢’ where j is a
p-name.

— (R=) concerns the rules (refl), (sym), (trans), (- sub) and (subI): all the
names i, j,k are p-names.

— (Rno—renaming) is: in (- G) and in (F H) v is not a negated p-name.

— (Rpp) is: i is a p-name and ® is either a subformula in ¢ of secondary
disjunctive force or G—j with j a p-name or a p-name j.

— (Ryon) concerns the rules (F NOM=), (NOM=1+), (F NOM¢), (NOM¢ +
), (F NOMpy), (NOMp +): i and i’ are p-names whereas j is not a p-name.
Ruyitness) concerns the rules (G F) and (H ): i and j are p-names.

— (Rsupr) is: in the (sub’ F)-rule and the (F sub’)-rule, i, j and j’ are p-names.

— The restriction (Ry) for the (¢)-rule for ¢ € @ is: all the nominals occurring
in oy are p-names.

The sequent calculus GL£ (in its restricted form) has the following separation
property: any p-name i occurring in a branch does not occur in a formula j = ¥
occurring on the same branch, except when either j = 1 or ¢ = G—-i or ¢ = i.
This separation property illustrates the control on the use of nominals imposed
by the above restrictions.

Theorem 2. If ¢ € NTL(G, H) is L-valid, then ¢ is provable in GL.

The proof of Theorem 2 (using Schiitte’s method) is based on a similar proof
for classical logic. In Section 4, we formally state in which sense GL is equivalent
to a calculus for a fragment of classical logic.

4 Sequent calculi for fragments of classical logic with
relational theories

In this section, we define a first-order Gentzen-style calculus GFOL, (based
on the calculus KEQ [d’A90, Section 3.5]) such that GL and GFOL; can be
viewed as syntactic variants. This is the opportunity to formally present (once
and for all) how a tableaux calculus can be viewed as a translation into clas-
sical logic. Let us briefly recall the translation ST (“Standard Translation”)

defined in [Ben83,GGYI3] of nominal tense formulae into the first-order language
def def

(here t is either a variable or a constant): ST(p;,t) = P;(t); ST(ij,t) =
tmay; ST(~,t) & ~ST(Y,%); ST(Y & ¢',%) = ST(6,%) @ ST(, v) for &
(A=} ST(Ge,t) =V ¥ (R(t,%') = ST(,%')) where x is a new variable;
ST(H,t) £V %' (R(¥',t) = ST(1,%')) where ¥’ is a new variable. It is known
that ¢ is L-valid iff & = Vxo ST(¢,%0) is FOL-valid. The previous statement
assumes that @ is a finite conjunction. By contrast, the developments in this
section does not assume that @ is finite. The rules of the calculus GFOL, are

those presented in Figure 5 - Figure 6 (other rules are added later on). Like the
notion of p-name in GL, an individual constant a occurring on a branch is said

to be a p-constant (or Skolem constant) % a does not occur in the root sequent
of the proof (possibly in construction) and it has been introduced on the branch
by a rule putting new constants on the branches. We write (a) [resp. 1(x)] to
denote the formula whose aj, is a p-constant occurring in it [resp. whose x is a
free individual variable occurring in it.].



I,y F A4 (initial sequents)

under the proviso: any formula ¢’ in I,%, A is (1) either a subformula 3" (a) of
Vxo ST (¢4,%0) where a is the unique p-constant in 1" (a) and in the case when ¥ = 9",
1 is atomic (2) or a formula a=b where a is a p-constant and b is either a p-constant
or a constant occurring in Vxo ST(¢,%0) (3) or a formula R(a,b) where a and b are
p-names.

A Lk A
' A

(PB)

where either v is a formula of secondary disjunctive force occurring below in the proof
containing a unique p-constant or ¢ is of the form ax=a; or R(ay,ax) where a; and
ays are p-constants.

- ST(¢, ax)

- Vxo ST (o, %0) (start)

the application of (start) is under the proviso that a, does not occur in ST(¢,x) (or
equivalently, ix does not occur in ¢) and Vxo ST(¢,x0) does not contain p-constants.

Fig. 5. First bunch of rules for GFOL,

For instance, the rules (V F); and (V F)2 can be seen as derived rules in the
calculus KEQ [d’A90] using the rules from KEQ recalled below

F7VX ¢(X>7¢(a) HA Fv (77517@527F A
F7VX¢(X)I_A Fa¢17¢1:>¢27|_A

This explains why the universal quantification in modal logic can be naturally
encoded in KEQ .

Let o be a finite sequence of formulas of the form R(a,a’), —-R(a,a’), a=a’,
—(a=a’). We define the sequent (I'F A) ®' o inductively as follows:

(FFA)@NETEFA (IFA)® a=a.o' < (INa=a' F A) @' o
(Ir'kA)® ﬂR(a a’). ’d:ef(F}—A,R(a,a)) o’

(M- A) @ —(a=a').o’ = (' A,a=a’) @' o’;

(I' A) @' R(a,a).0’ £ (I R(a,a') - A) @ 0.

Let 1 be a restricted IT9-formula in @ (we use the notations from Section 3).
The rule associated to v is presented in Figure 7.

By construction, the calculi GL and GFOL have (almost) the same amount
of rules and there is a natural correspondence between the rules of GL£ and
GFOL(. For instance, the (V I);-rule in GFOL, correspond to the (G I)-rule
in GL and the (sub F)-rule and (sub’ F)-rule in GL correspond to the (subsqr)-
rule in GFOL,.

Let ¢ € For and II be a proof of Vxg ST(¢,%¢) in GFOL,. By induction
on the length of IT one can show that any formula v occurring in I has at
most two p-constants occurring in it. Moreover, if ¢ is not an atomic formula



rékr A reAe Ik A o
Tra- "7 7ra TFAd =a )

F7¢1,¢2|_A F'_A7¢17¢2

Lo, 1= g2 F A I'g1 = 2 - A, 2

I Ay = Iyt A e I,y A

Lok Ao N ( ) ke AN onykE A

I R(ab), Y5 (B(ax) = 6(x),6(0) F A [R(b,a) ¥ (R(x,2) = 6(x)), 6(6) - A
I''R(a,b),Vx (R(a,x) = ¢(x)) F A (¥F) I''R(b,a),Vx (R(x,a) = ¢(x)) F A

(=M (=F)2

(F N2 (ANF)

(VF)2

I'R(a,b),F A, ¢(b)
't A, Vx (R(a, x) = ¢(x))

I')R(b,a),F A, ¢(b)
I'F A Vx (R(x,2) = ¢(x))

(F¥)1 (F V)2

under the proviso that b does not occur in the lower sequent.

F, Ak, Ak, Ak, Tak, Ak, TaAky FA

!
T, ay, =ay, ar,=ar - A (NOM= +)

I'yp(ak,) B A, d(ar, ), ak, =ak,
Ipar,) = A, (ak,)
I, Vx(R(ak,, %) = ¥(x)) F A, ¥(ak, ), R(ak, , ak, )
L, VX(R(akmx) = ¢(X)) F A7'¢}(ak2)
F: ak1=a]€7R’(ak27 ak?l) F AaVX(R(aka) = _‘(X:ak))
I' ap,=ar F A, Vx(R(ak,,x) = —(x=ax))
I, vX(R(akl ) X) = QZJ(X)) F A, ¢(ak2)a R’(akzv akl)
I Vx(R(x, ak,) = ¥(x)) F A, ¥(ak,)
I'yap,=ap,R(ak, , ak,) - A, Vx(R(ak,, x) = —~(x=ax))
I, ap, =ag = A,VX(R(X7 akQ) = —\(x=ak))

(- NOML)

(NOMG F)

(F NOMg)

(NOM}; +)

(F NOMy)

in the above rules, a;, and ay, are p-constants and aj is not a p-constant.

Ia=ak A A I' a=b,b=a, A I, a=b,b=b’,a=b’,- A
TrFa aoccusmd, Ia=b - A I, a=b, b=b’ - A
I'a=bF A, , (b I a=b,y(a), (b)) H A
ST ORION. V@A

I'Na=b - A, 9(a) I'ia=b,y(a) - A
In the above rules, a, b and b’ are p-constants

Fig. 6. Common core of (introduction rules) for GFOL,




(F"A)@lgl (F"A)@’O’k

(F [ A) ®/ ago (w)
1. 00 = sgPd (ai,o7 a%70)7 .. .,sé(o)Pé(O)(all(g)7 aéi%)) and all the constants in oo are p-
constants;
2. for 1 <u <k, ou=005,P0(al usa0),---» sé(u)Pé(u)(allsz), aé(fft));

3. for any o, 0’ € {1,2}, q,¢' € {1,...,k}, 7€ {1,....l(¢)} and r" € {1,....1(¢")},
(a) 2a,q = 2or g iffag g = ag, o
(b) if 25,4 is equal to some y,, then af, , does not occur in the conclusion.

Fig. 7. (¢)-rule for ¢ €

whose predicate symbol is binary, then exactly one p-constant occurs in ¢ unless
¥ is the root formula VxqST (¢, %) itself. This is reminiscent of the facts that
in standard modal logic, one can deal with only one world at a time and two
individual variables are sufficient for encoding the quantification O in first-order
logic. Theorem 3 below helps understanding the relationships between GL and
GFOL,.

Theorem 3. (I) Let IT be a proof of ¢ in GL. Then, there is a proof II' of
Vxo ST (¢, %) in GFOL, such that |IT'| is in O(|I1|).

(II) Let IT be a proof of Vxo ST(¢p,x0) in GFOL, for some nominal tense
formula ¢. Then, there is a proof II' of ¢ in GL such that |IT'| is in O(|I]).

5 Concluding remarks

The results of the previous sections can be extended to the polymodal case.
Indeed, it is easy to consider for some countable set I of “modal terms”, the
family {G; : i € T} U{H, : i € I} of tense operators by appropriately considering
polymodal Kripke models. The class CIIY§ is defined as the class of polymodal

logics such that the class of frames is determined by a (possibly infinite) set of
restricted II9-formulae over the vocabulary containing {R; : i € I'}. This exten-
sion does not generate any new technical problems and it is quite powerful as
shown below. Let Iy = {cop,...,c;,...} be a set of modal constants and I be the
set of modal terms t inductively defined as follows: t == id | ¢; | —t |
t7™1 | t1 Uty | t1Nte | tyoty for ¢; € Iy. We wish to interpret the
operators —, ~!', U, N and o and the identity constant id as in the Relation
Calculus. Although it is known that the Relation Calculus can be translated in
classical logic, surprisingly, we can also capture such a semantics in our frame-
work using only restricted I19-formulae. So, by using our framework we can deal
with nominal (poly)tense logics admitting the operators —, =1, N, U, o and this is
done uniformly® (this list of operators is not exhaustive). By contrast, in [Bal98,
Chapter VI], only the operators U and o and the constant id are treated.

In this paper, we defined sequent calculi for nominal tense logics. The idea of
using “implicit prefixes” in the calculi, due to [Kon97], allows a great flexibility

5 Numerous description logics can be also treated within our framework



and we have been able to consider most of the classes of modal frames first-order
definable that can be found in the literature. Using standard correspondences, it
is easy to define tableaux calculi for nominal tense logics from our sequent-style
calculi. Extensions of the calculi to cope with the logical consequence relations
are also possible. Moreover, by appropriately modifying the (start)-rule, one can
deal with finite configuration in the sense of [Rus96, Chapters 2 and 3]. Similarly,
prefixed calculi (either sequent-based or tableaux-based) could be easily defined
for the corresponding (non nominal) tense logics. Because of lack of space, such
developments are omitted here but they are not difficult to derive from the
present paper. Similarly, the design of decision procedures from our calculi was
out of the scope of this paper but it is a question worth being investigated in
the future.

The adequateness of our framework for mechanization cannot be stated with-
out further investigations although it seems theoretically appealing (see for in-
stance in Section 3.3 how the application of rules can be restricted). There is no
reason to be overly optimistic since we have shown that the non prefixed sequent
calculi are syntactic variants of restricted calculi for classical logic (augmented
with relational theories). This property is shared by numerous calculi from the
literature. As a conclusion, it is an open question whether any general frame-
work defining sequent-style proof systems for modal (or nominal tense, ...) logics
characterized by first-order definable classes of modal frames (take for instance
C Hg) is bound to define syntactic variants of calculi for fragments of classical
logic augmented with relational theories.

Acknowledgments The author thanks Rajeev Goré for suggestions about a pre-
liminary version of this work and for many discussions about prefixed tableaux
and related matters while being an International ARC Fellow at the A.R.P.
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