Skip to main content

Relevance Feedback and Term Weighting Schemes for Content-Based Image Retrieval

  • Conference paper
  • First Online:
Visual Information and Information Systems (VISUAL 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1614))

Included in the following conference series:

  • 734 Accesses

Abstract

This paper describes the application of techniques derived from text retrieval researcht o the content-based querying of image databases. Specifically, the use of inverted files, frequency-based weights and relevance feedback is investigated. The use of inverted files allows very large numbers (≥ \( ( \geqslant \mathcal{O}(10^4 )) \) (104)) of possible features to be used, since search is limited to the subspace spanned by the features present in the query image(s). Several weighting schemes used in text retrieval are employed, yielding varying results. We suggest possible modifications for their use with image databases. The use of relevance feedback was shown to improve the query results significantly, as measured by precision and recall, for all users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. J. of the Am. Soc. for Information Science 41(4) (1990):288–287

    Article  Google Scholar 

  2. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information Processing and Management 24(5) (1988):513–523

    Article  Google Scholar 

  3. Salton, G.: The state of retrieval system evaluation. Information Processing and Management 28(4) (1992):441–450

    Article  Google Scholar 

  4. Pun, T., Squire, D. M.: Statistical structuring of pictorial databases for content-based image retrieval systems. Pattern Recognition Letters 17 (1996):1299–1310

    Article  Google Scholar 

  5. Niblack, W., Barber, R., Equitz, et al.: QBIC project: querying images by content, using color, texture, and shape. In: Niblack, W., ed., Storage and Retrieval for Image and Video Databases, vol. 1908 of SPIE Proc. (Apr. 1993), 173–187

    Google Scholar 

  6. Jain, A. K., Vailaya, A.: Image retrieval using color and shape. Pattern Recognition 29(8) (Aug. 1996):1233–1244

    Article  Google Scholar 

  7. Smith, J. R., Chang, S.-F.: Tools and techniques for color image retrieval. In: Sethi, I. K., Jain, R. C., eds., Storage & Retrieval for Image and Video Databases IV, vol. 2670 of IS&T/SPIE Proceedings. San Jose, CA, USA (Mar. 1996), 426–437

    Google Scholar 

  8. Sclaroff, S., Taycher, L., La Cascia, M.: ImageRover: a content-based browser for the world wide web. In: IEEE Workshop on Content-Based Access of Image and Video Libraries. San Juan, Puerto Rico (Jun. 1997), 2–9

    Google Scholar 

  9. Ma, W., Manjunath, B.: Texture features and learning similarity. In: CVPR’96 [24], 425–430

    Google Scholar 

  10. Pentland, A., Picard, R. W., Sclaroff, S.: Photobook: Tools for content-based manipulation of image databases. Intl. J. of Computer Vision 18(3) (Jun. 1996):233–254

    Article  Google Scholar 

  11. Sclaroff, S.: Deformable prototypes for encoding shape categories in image databases. Pattern Recognition 30(4) (Apr. 1997):627–642. (special issue on image databases)

    Article  Google Scholar 

  12. Cohen, S. D., Guibas, L. J.: Shape-based image retrieval using geometric hashing. In: Proc. of the ARPA Image Understanding Workshop (May 1997), 669–674

    Google Scholar 

  13. Ze Wang, J., Wiederhold, G., Firschein, O., Xin Wei, S.: Wavelet-based image indexing techniques with partial sketch retrieval capability. In: Proc. of the 4th Forum on Research and Technology Advances in Digital Libraries. Washington D.C. (May 1997), 13–24

    Google Scholar 

  14. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Region-based image querying. In: Proc. of the 1997 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’ 97). San Juan, Puerto Rico (Jun. 1997)

    Google Scholar 

  15. Ma, W. Y., Deng, Y., Manjunath, B. S.: Tools for texture-and color-based search of images. In: Rogowitz, B. E., Pappas, T. N., eds., Human Vision and Electronic Imaging II, vol. 3016 of SPIE Proc.. San Jose, CA (Feb. 1997), 496–507

    Google Scholar 

  16. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space. In: Jain, R., eds.: Image Databases and Multi-Media Search, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (Aug. 1996) Smeulders and Jain [25], 35–42

    Google Scholar 

  17. Tversky, A.: Features of similarity. Psychological Rev. 84(4) (Jul. 1977):327–352

    Article  Google Scholar 

  18. Squire, D. M.: Learning a similarity-based distance measure for image database organization from human partitionings of an image set. In: Proc. of the 4th IEEE Workshop on Applications of Computer Vision (WACV’98). Princeton, NJ, USA (Oct. 1998), 88–93

    Google Scholar 

  19. Huang, J., Kumar, S. R., Mitra, M.: Combining supervised learning with color correlograms for content-based image retrieval. In: Proc. of The Fifth ACM Intl. Multimedia Conf. (ACM Multimedia 97). Seattle, USA (Nov. 1997), 325–334

    Google Scholar 

  20. Rui, Y., Huang, T. S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool in interactive content-based image retrieval. IEEE Trans. on Circuits and Systems for Video Technology 8(5) (Sep. 1998):644–655

    Article  Google Scholar 

  21. Jain, A., Healey, G.: A multiscale representation including opponent color features for texture recognition. IEEE Trans. on Image Processing 7(1) (Jan. 1998):124–128

    Article  Google Scholar 

  22. Witten, I. H., Moffat, A., Bell, T. C.: Managing gigabytes: compressing and indexing documents and images. Van Nostrand Reinhold, 115 Fifth Avenue, New York, NY 10003, USA (1994)

    MATH  Google Scholar 

  23. Squire, D. M., Pun, T.: A comparison of human and machine assessments of image similarity for the organization of image databases. In: Parkkinen, J., Visa, A., eds.: The 10th Scandinavian Conf. on Image Analysis (SCIA’97), Lappeenranta, Finland (Jun. 1997) Frydrych et al. [26], 51–58

    Google Scholar 

  24. Proc. of the 1996 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’ 96), San Francisco, California (Jun. 1996)

    Google Scholar 

  25. Smeulders, A. W. M., Jain, R., eds.: Image Databases and Multi-Media Search, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands (Aug. 1996)

    Google Scholar 

  26. Frydrych, M., Parkkinen, J., Visa, A., eds.: The 10th Scandinavian Conf. on Image Analysis (SCIA’97), Lappeenranta, Finland (Jun. 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Squire, D., Müller, W., Müller, H. (1999). Relevance Feedback and Term Weighting Schemes for Content-Based Image Retrieval. In: Huijsmans, D.P., Smeulders, A.W.M. (eds) Visual Information and Information Systems. VISUAL 1999. Lecture Notes in Computer Science, vol 1614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48762-X_68

Download citation

  • DOI: https://doi.org/10.1007/3-540-48762-X_68

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66079-8

  • Online ISBN: 978-3-540-48762-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics