Fraunhofer Einrichtung

Experimentelles
Software Engineering

Applications of Knowledge Acquisition in
Experimental Software Engineering

Authors:

Andreas Birk
Dagmar Surmann
Klaus-Dieter Althoff

Submitted for publication to
European Knowledge Acquisition
Workshop 1999 (EKAW'99)

I[ESE-Report No. 059.98/E
Version 1.0
November 1998

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern

Executive Summary

Many tasks in experimental software engineering (ESE) involve the acquisition of
knowledge. Only for very few of them have systematic knowledge acquisition
(KA) practices been established. It is expected that these ESE tasks can be
accomplished more effectively if the application of appropriate systematic KA
methods is fostered.

Most reports on KA applications in software engineering address only some
selected aspects. A broader ESE perspective with its additional facets (e.g., qual-
ity and knowledge management issues) has not yet been presented so far.

This paper surveys applications of knowledge acquisition in experimental soft-
ware engineering, introduces a repository of knowledge elicitation (KEL) tech-
niques, and suggests a methodology for the development of customised KA
methods in experimental software engineering. Repository and methodology
aim at fostering the dissemination of systematic KA practices in ESE. They are
applied at Fraunhofer [ESE to develop methods for the acquisition of experiential
software engineering knowledge.

Keywords: knowledge acquisition, knowledge management, experimental
software engineering

Copyright [J Fraunhofer IESE 1998 v

Vi

Copyright [J Fraunhofer IESE 1998

Table of Contents

1 Introduction 1
1.1 Experimental Software Engineering 2
1.2 Knowledge Acquisition 4
1.3 Requirements on KA in ESE 5

A Survey of KA Applications in ESE 5
2.1 Literature Review 5

Survey Results 7
2.3 Observations from the Survey 9
3 An Experience Base of Knowledge Elicitation Techniques 11
4 A KA methodology for ESE 14
4.1 Pre-Study 15
4.2 KEL Strategy Development 15
4.3 Knowledge Elicitation 15
4.4 Knowledge Modelling 15
4.5 Example KA Method 16
5 Conclusions and Future Work 17

6 References 18

Copyright [J Fraunhofer IESE 1998 V”

VIl Copyright [J Fraunhofer IESE 1998

Introduction

1 Introduction

Software engineering (SE) involves a multitude of knowledge-intensive tasks:
Elicitation of user requirements for new software systems, identification of best
software development practice, experience collection about project planning
and risk management, and many others.

In addition, the discipline of experimental software engineering (ESE) places par-
ticular emphasis on knowledge management and knowledge-based support. It
builds on the assumption that continuous learning and systematic reuse of
learnt knowledge and experience are crucial for the further development of
today’s software development and management practices.

Despite the importance of knowledge management in ESE, organised and
mature approaches to knowledge acquisition (KA) are rare. Compared to other
areas of engineering, SE is still quite young. Technological developments are
progressing fast. For these reasons, the often needed KA and knowledge man-
agement components of methods and techniques have not yet been developed
very far. However, for the same reasons, effective knowledge acquisition and
knowledge management (KM) become more and more important for sustained
business success.

The objective of our work is to foster the further dissemination and use of
advanced KA methods in ESE. This paper presents the approach through which
we want to achieve this objective. The approach consists of three elements:

e Survey and characterisation of KA applications in ESE

e A repository of reusable knowledge elicitation (KEL) techniques and experi-
ences

e A methodology for developing customised KA methods for specific ESE tasks

The survey of KA applications provides an overview of the various tasks in exper-
imental software engineering that can benefit from advanced and systematic
knowledge acquisition practices. The characterisation of these applications illus-
trates the need for customised KA methods. It also is the first step to identify
requirements for the development of such customised methods.

A repository of knowledge elicitation techniques is important for disseminating
good KA practice throughout experimental software engineering. Many KEL
techniques that could be beneficial to ESE are just not known to software engi-
neers. Operational definitions of these techniques need to be collected and
made accessible to software engineers. They must be supplied with experience
about when and how to use which technique. This information facilitates the

Copyright [J Fraunhofer IESE 1998 1

Introduction

selection of KEL techniques for a specific knowledge acquisition task and sup-
ports the application of the KEL techniques.

Such a repository does not only support knowledge acquisition and knowledge
management in ESE. It also is a knowledge management application itself,
because the repository needs to be kept alive. It must be extended continuously,
and experience from the application of KEL techniques should be fed back into
it.

A methodology is needed to guide software engineers in the development of
customised KA methods. Such a methodology starts with the characterisation of
a knowledge acquisition task and selects appropriate KEL techniques from the
repository. The KEL techniques must then be integrated with each other and
supported by appropriate tools. The result is an operational, customised KA
method for the specific application task.

This paper is structured according to the three elements of our approach: Sec-
tion 2 surveys applications of knowledge acquisition in experimental software
engineering, Section 3 presents the repository of KEL techniques, and Section 4
describes the knowledge acquisition methodology. A discussion and an outlook
on future work are addressed in Section 5. The remainder of this first section
briefly introduces the fields of experimental software engineering and knowl-
edge acquisition. It also lists requirements on KA applications in ESE, which were
used to guide the development of the approach presented.

1.1 Experimental Software Engineering

Software engineering aims at providing technologies that can be used for devel-
oping software and for managing software development. This involves the defi-
nition, selection, tailoring, and integration of principles, methods, techniques,
and tools in order to achieve a software product that meets the desired quality,
time, and cost requirements. For managing these requirements and for demos-
trating that they actually have been achieved, analytical and empirical measures
must be applied [4] [5].

Experimental software engineering is a branch of software engineering that
addresses problems and research questions of software development and
improvement through an experimental approach. It utilises systematically
designed experiments and other kinds of empirical studies in order to enhance
available knowledge about the software domain. ESE is built on the principle of
continuous learning and reuse of experience, which is defined through the
Quality Improvement Paradigm / Experience Factory (QIP/EF).

The QIP is a six-step proceeding for structuring software development and
improvement activities (see Figure 1). It involves three overall phases: planning,

Copyright [J Fraunhofer IESE 1998

Figure 1:
The Quality Improve-
ment Paradigm

Figure 2:
The experience fac-
tory

Introduction

execution, and evaluation of the task. The planning phase is based on the
explicit characterisation (QIP1) of the initial situation, the identification of the
goals to be achieved (QIP2), and the actual development of the plan (QIP3). The
plan then guides the systematic execution of the task (QIP4). The subsequent
evaluation phase involves the analysis of the performed actions (QIP5) and the
packaging of the lessons learnt into reusable artifacts (QIP6). The evaluation
allows to learn for similar tasks in the future.

6. PACKAGE 1. CHARACTERISE
5. ANALYSE 2. SET GOALS
4. PERFORM 3. CHOOSE MODELS

The experience factory is a logical and/or physical organisation that supports
project developments by analysing and synthesising all kinds of experience, act-
ing as a repository for such experience, and supplying that experience to various
projects on demand. The experience factory complements the project organisa-
tion [4]. The experience factory is mainly responsible for conducting steps 5 and
6 of the QIP while steps 1 to 4 mainly concern the project organisation (see Fig-
ure 2).

1 project organisation n

E project team §

software knowledge
derived from past projects
experience
engineer
(or knowledge
engineer)

ESE has many relations to knowledge engineering and knowledge manage-
ment. KA from experienced software professionals is an important means for
gaining the knowledge and insight to answer ESE questions.

project organisation 1
activities:

1. characterise environment
2. set goals
3. choose models

4. perform project

feedback,
lessons learnt,
deliverables

knowledge
acquisition

activities:
5. analyse
6. package

experience base
(or knowledge base)

experience factory

Copyright [J Fraunhofer IESE 1998 3

Introduction

1.2 Knowledge Acquisition

Knowledge acquisition (KA) is the transfer and transformation of expertise from
some knowledge source to some explicit knowledge representation—usually
denoted as knowledge base—that enables the effective use of the knowledge.
This definition is based on the one by Hayes-Roth et al. from 1983 [6]. It has
been generalised slightly to meet the application of knowledge acquisition in
experimental software engineering as addressed in the remainder of this paper.

A KA method is an organised approach to knowledge acquisition. It involves a
defined process and guidelines for process execution. A knowledge acquisition
methodology defines and guides the design of KA methods for particular appli-
cation purposes. Section 4 suggests a KA methodology for experimental soft-
ware engineering. Knowledge elicitation (KEL) denotes the initial steps of
knowledge acquisition that identify or isolate and record the relevant expertise
using one or multiple KEL techniques. A KA method can involve a combination
of KEL techniques which is then called KEL strategy. These terms are used differ-
ently by different authors. We have chosen our definitions to meet the specific
terminology needs of this paper.

Musen [7] lists several characteristics of knowledge acquisition that need to be
considered when applying KA methods:

e Knowledge acquisition is a process of joint model building. A model of exper-
tise is built in co-operation between a domain expert (i.e., the knowledge
source) and a knowledge engineer.

e Much knowledge is tacit (i.e., it is not directly accessible). Appropriate KEL
techniques are needed to make it explicit.

e The results of knowledge acquisition depend on the degree to which the
knowledge engineer is familiar with (a) the domain of the knowledge to be
acquired, and (b) its later application.

e The results of knowledge acquisition depend on the formalism that is used to
represent the knowledge. Knowledge acquisition is most effective if knowl-
edge representation is epistemologically adequate (i.e., all relevant aspects of
expertise can be expressed) and usable (i.e., suits all later usage needs).

These characteristics of knowledge acquisition provide guidance for the design
of KA methods. For example, they imply that KA methods must assure that the
knowledge engineer becomes familiar with the application domain. In Section 4
a knowledge acquisition method is presented that reflects these characteristics.

Copyright [J Fraunhofer IESE 1998

Introduction

1.3 Requirements on KA in ESE

Experimental software engineering puts specific requirements on knowledge
acquisition that are quite different from KA applications in other engineering
sciences or from the development of knowledge-based systems (KBS):

For most KA applications in ESE, the required knowledge exists only implic-
itly, codified, and informally. Hence, it can be quite difficult to access the
knowledge. This imposes high requirements on the validity of the KEL tech-
niques and strategies used.

The results of KA in ESE are often the basis for further technical or manage-
rial activities. These activities depend very much on the reliability of KA
results. For this reason, the validity of KA methods and their results is an
important concern in ESE.

ESE involves a wide variety of target knowledge representation formats for
KA, which can be highly specific to ESE. Many of these knowledge represen-
tation (KR) formats are different from the traditional rule-, frame-, or case-
based formalisms involved in KBS. For this reason, the target KR format
becomes an important criterion to assess the appropriateness of a candidate
KEL technique.

In addition, an ESE artefact (e.g., a design document) often involves multiple
different knowledge types (e.g., facts as well as rules and policies). Hence, an
appropriate KA method might require a combination of multiple KEL tech-
niques.

In ESE, KA is not only useful for providing problem-solving support in the
form of knowledge-based systems. It can also provide the knowledge to
effectively perform technical and managerial tasks, and it can provide input
to corporate knowledge management systems and improvement pro-
grammes.

Knowledge-based systems have not yet found their way to wide-spread use
in software industry (cf. [8] [9]). To foster their further dissemination, a grad-
ual transition from current ESE practices via knowledge management imple-
mentation to KBS is recommended. This is an additional challenge for KA in
ESE, asking for KA methods that adapt to specific needs of KM applications.
Systematic knowledge acquisition should be integrated into many ESE tasks.
As a consequence, KA methods should be applied also by non-knowledge
engineers. This requires a strong need for operational definitions of KA meth-
ods and guidance for their application.

A KA methodology for ESE must take these requirements into consideration and
provide a well-organised approach to the selection of appropriate KEL tech-
niques. The KA methodology suggested in Section 4 reflects these require-
ments.

Copyright [J Fraunhofer IESE 1998

A Survey of KA Applications in

ESE

2

2.1

A Survey of KA Applications in ESE

Experimental software engineering involves a multitude of knowledge acquisi-
tion tasks. They can differ in quite a variety of aspects such as involved knowl-
edge types, knowledge sources, knowledge users, modes of knowledge use,
and target knowledge representation. A good starting point to provide tailored
and effective methodological support to these knowledge acquisition tasks in
ESE is to survey these tasks systematically, and to characterise them appropriate.

This section presents such a survey and characterisation of KA applications in
experimental software engineering. It thus demonstrates the wide variety of KA-
related tasks, which has often not been recognised sufficiently by ESE. For the
field of knowledge acquisition, the survey provides a map of possible applica-
tions for established KA approaches. The survey is not meant to be comprehen-
sive and complete. It was our intention to build on previous work in SE and to
complement it with a specific ESE perspective.

Literature Review

Applications of knowledge acquisition in software engineering have been
described—among others—by [10] [9] [11] [12]. A particular tradition in system-
atic KA can be found in the field of requirements engineering (RE) (cf. [13] [14]
[15] [16]).

Eriksson [10] lists three major application areas of knowledge acquisition in soft-
ware engineering: Initial feasibility studies, requirements specification, and the
identification of solution approaches for design and implementation problems.
He summarises that KA is a broad activity which may be useful at many stages in
the software development process. Some KA methods were already used in SE,
albeit often in a less explicit and systematic manner than in KBS development.

Grogono [9] addresses the mutual interrelations between expert systems and
software engineering. Thus, indirectly, he also covers the need for knowledge
acquisition in SE. The expert systems that he lists require the following kinds of
knowledge: Requirements specifications, expertise on design structures (i.e.,
products or artifacts), expertise on the design and implementation processes
(mainly in the form of rules or heuristics), as well as software process models
(i.e., procedure-like representations).

Briand et al. [11] describe a method for estimating software development effort.

It is a hybrid approach that combines acquisition of experiential knowledge with
empirical data from past projects. The acquired causal models allow for effort

Copyright [J Fraunhofer IESE 1998

A Survey of KA Applications in
ESE

predictions that are based on significantly less empirical data than would be
needed otherwise. Wilson and Hall [12] use construct elicitation to investigate
the perceptions of software quality that they found in a number of IT organisa-
tions.

The various analogies between knowledge engineering and requirements engi-
neering are surveyed and investigated by Angele and Studer [13] and by Shaw
and Gaines [14]. A recent publication by Weidenhaupt et al. [15] surveys and
investigates the application of various scenario techniques for the acquisition of
system requirements. Maiden and Ncube [16] describe an approach to the
acquisition of requirements for the selection of commercial off-the-shelf soft-
ware that involves multiple semi-structured interview techniques.

2.2 Survey Results

Table 1:
Overview of KA

Most reports on KA applications related to software engineering either address
only some particular aspects (e.g., requirements elicitation or cost estimation) or
focus on software development tasks only. A broader ESE perspective with its
additional facets (e.g., quality, improvement, and knowledge management
issues) has not yet been presented so far. To gain such a broader perspective on
KA applications in experimental software engineering as a basis for our further
work, we have investigated multiple literature sources and interviewed SE
experts. The results are shown in Table 1. The table demonstrates the wide area
of applications of KA in ESE. Each application is characterised briefly.

applications in ESE

ESE Task Knowledge Items Knowledge | Knowledge | Target-
Subiect Topi £ di Sources Users Knowledge
ubject Topics ncoding Representa-
tions
Product Engineering
Requirements Requirements, H, P, D U, C, M, SE, SE S,G,U,F
Analysis Business Processes, PD, S
Use Cases
Architecture Reusable Artefacts, D, H PD, L, SE, S SE G,S, F U
Design Templates,
ied - Patterns,
Detailed Design Typical subjects of these knowledge types are G5 FU
Implementation | architectures, data models, algorithms, and code. F, G
Integration Test Plans, D,H,P U, C, SE,QM, | SE F, G, US
and Testing Test Cases SP
Maintenance Programme Understanding D,H,P SE, S, PD SE F, G
Software Requirements, D, H PD, L, SE SE S, U, G
Acquisition Third-Party Products

Copyright [J Fraunhofer IESE 1998

A Survey of KA Applications in
ESE

ESE Task Knowledge Items Knowledge | Knowledge | Target-
Subiect Topi Encodi Sources Users Knowledge
ubject Topics ncoding Representa-
tions
Management
Project Time and Effort Estimates, H, P, D PM, PD, L, SP | PM F, S, G
Management Schedules,
Staffing Plans
Quality Quality Plans D,H,P PD, PM, QM, | QM S, G
Management SP, L
Risk Risk Mitigation Plan H, P, D PM, PD, SP, L | PM S
Management
Support
Configuration Configuration Management Plan D, H,P PD, SE, QM, SE, QM, PM F, G, S
Management SP
Documentation | User Documentation D,H, P PD, SE, U, S T™W S, G
Process Process Model H,D,P SE, PM, QM, | SE, QM, PM F, G,S, U
Modelling PD, SP
Process Processes, H, P, D SE, PM, QM, SE, QM, PM S, G
Enactment Guidelines SP, PD
Process Process Model, D, P, H PD, SP, SE, SE, QM F, G, S
Automation Configuration Management Plan, PM, QM
System Architecture,
Code
Note: This These items are structure- and process-related
involves process knowledge about different software engineering
automation using artefacts or concepts relevant for setting up pro-
CASE tools, and cess automation.
process support
using software
engineering envi-
ronments.
Process Assess- | Various aspects of the software engineer- P,D, H SP, PD, SE, PM, QM S, G, U
ment ing practices PM, QM
Measurement Quality Goals, D,P, H PD, SP, SE, PM, QM, SE | F, G, S
Understanding and Definition of Qualities, PM, QM
Products, and Processes,
Expected Phenomena,
Measurement Plan,
Interpretation of Observed Phenomena
Improvement Improvement Plan D,H,P PD, SE, PM, QM, PM S, G
QMm, sP
Legend:

Knowledge Types (Encoding): D = Documents, H = Humans, P = Processes.
Knowledge Sources and Knowledge Users: U = User, C = Customer, M = Marketing, PM = Project Management, QM = Quality Management,

SE = Software Engineer, TW = Technical Writer, S = Existing System, PD = Existing Project Documentation, L = Literature, SP = Software Process.
Target Knowledge Representation: G = Graphics, U = Unstructured and S = Structured or Semi-Formal Natural Language, F = Formal Language.
These lists are sorted by relevance. Most relevant items appear first.

Copyright [J Fraunhofer IESE 1998

A Survey of KA Applications in
ESE

Starting point of our investigation was a taxonomy of ESE tasks. It is listed in the
leftmost column of Table 1. The tasks are grouped into three categories: Prod-
uct engineering (i.e., the typical software development tasks), management
(e.g., project or quality management), and support (i.e., all activities that are not
directly related to the product development but that ease, facilitate, and
improve it). For each task, a set of knowledge items (i.e., artefacts or concepts)
were identified, which are usually gained within the related task by some kind of
knowledge acquisition activity. Each knowledge item is characterised using its
subject topic and the typical kinds of knowledge encoding (i.e., whether it is
contained in documents, available in the minds of humans, or present in the
form of processes and procedures).

Each set of knowledge items is supplied with information about the typical
knowledge sources (e.g., a SE role or a document), its knowledge users, and the
target knowledge representations in which it is documented and used once it
has been acquired. For each set of characteristics, the order in which they are
listed indicates an order of relevance.

2.3 Observations from the Survey

The survey and the characterisation of knowledge acquisition applications in
experimental software engineering provide an interesting perspective on the
detailed, specific KA requirements of ESE. Useful observations can be made for
selecting KEL techniques and for developing KA methods for application in
experimental software engineering. In the following, the most relevant observa-
tions are summarised.

Product Knowledge vs. Process Knowledge

Two kinds of knowledge are most important for the gross number of ESE tasks:
Product knowledge and process knowledge. Product knowledge addresses
structure and other characteristics of artefacts (e.g., system architecture or func-
tionality). Process knowledge deals with how ESE tasks should be performed
(e.g., the development process, policies, and guidelines), and how the tasks
interact.

Dependency Chains between ESE Tasks

For product engineering and support tasks, especially, it is typical that there are
chains of dependent tasks: Design tasks depend on requirements analysis, and
implementation depends on design. Likewise, process assessment and measure-
ment depend on process modelling, and improvement depends on process
assessment and measurement.

Copyright [J Fraunhofer IESE 1998 9

A Survey of KA Applications in

ESE

10

These dependency chains have implications on knowledge encoding: Knowl-
edge that is needed to accomplish the tasks in the chain can mainly be acquired
from human experts, especially the first tasks. During KA such knowledge is rep-
resented explicitly, so that the subsequent tasks can widely rely on documented
knowledge.

High Variety of Knowledge Sources

The lists of knowledge sources for the different ESE tasks can be quite long. The
knowledge sources of a certain task can be quite different. This implies that the
KEL techniques used to gain the required knowledge must also be quite differ-
ent, because different groups of persons (e.g., software engineers vs. custom-
ers) can show very different communication styles and terminologies.

Support Tasks Have Many Different Knowledge Users

By definition of the taxonomy that is used to structure the ESE tasks, the knowl-
edge users of product engineering tasks are software engineers, and those of
management tasks are project or quality managers. In contrast, each support
task can have multiple knowledge users, and the sets of users for two support
tasks can be different.

The survey of KA applications in experimental software engineering and their
characterisations provide a starting point for the development of customised KA
methods that can be used to accomplish these tasks. The two following sections
suggest an approach by which the development of such methods can be sup-
ported.

Copyright [J Fraunhofer IESE 1998

3

An Experience Base of
Knowledge Elicitation
Techniques

An Experience Base of Knowledge Elicitation Techniques

Software engineering can benefit from the adoption of advanced KA practices.
Therefore, a body of knowledge about KA needs to be collected, made accessi-
ble, and disseminated to software engineering professionals. Experience about
KEL techniques is of particular interest to experimental software engineering,
because these are the basic elements needed to develop customised KA meth-
ods for the various ESE tasks.

This section presents the repository (or experience base) of KEL techniques that
has been built at Fraunhofer IESE. We describe the structure of the chosen
knowledge representation and outline how the knowledge was collected and
how it is used.

To support systematic KEL practices in ESE, the following information needs to
be provided to software engineering personnel:

Concise and operational definitions of the KEL techniques.
¢ Information about the application context of the KEL techniques (i.e., in
which situations it can be applied, and in which situations it is inappropriate).
e Traceability information and literature references that allow to access further
information about the KEL techniques.

The representation structure we have chosen to describe experiences about KEL
techniques (in the following denoted as experience packages) meets these
requirements. Table 2 shows an example experience package. It has the form of
a table with pre-defined information blocks. The upper part of the table con-
tains the definition and classification of the technique as well as references and
traceability information (i.e., its name, and slots for sources, classification, rela-
tionships, description, and characteristics). The lower part contains information
relevant to selecting and using the technique (i.e., its application context). Its
slots are: Prerequisites, advantages, disadvantages, risks, and notes.

Copyright [J Fraunhofer IESE 1998 1 1

An Experience Base of
Knowledge Elicitation
Techniques

Table 2:

Example experience
package for a KEL
technique

12

Semi-Structured Interview

Sources [1112] [3]
Classification Interview/Semi-structured Interviews [1]
Interviews/Structured Interviews [2]
Relationships Kind of Interview
Description The interviewer has a list of prepared questions. But the order in which they are covered

and the words used to express them may vary from interview to interview.
Many of the questions are open questions.

(11, 2]

Characteristics Puts more demands on the interviewer than do fully structured and pre-determined
interviews. [1]

Prerequisites Preparation of generic questions and coarse outline of interview structure.

Some basic familiarity of the elicitor with the domain and the tasks for which knowl-
edge needs to be acquired.

Advantages CNTS Structure provides more systematic and complete coverage of the domain than
unstructured interviews. [2]
STYL EXPT ELIC Structure tends to be more comfortable for both expert and elicitor. [2]
PERF STYL The interview can flow smoothly. [1]
CNTS The interviewee's associations between topics can be identified, because he/she
has the freedom to follow spontaneous associations during the interview. [1]
KTYP Is appropriate for eliciting facts, conceptual structure, causal knowledge, and jus-

tification. [3]

Disadvantages PROC ELIC Requires more preparation time and domain knowledge than unstructured
interview. [2]
KTYP Is inappropriate for eliciting expert’s strategy. [3]

Risks KTYP Can be inappropriate when used to elicit rules, weight of evidence, and context
of rules. [3]

Notes Answers to one question may arise as part of answers in another question. [1]

The wording of questions can be adopted to the vocabulary of the interviewee. [1]

Each entry that has been acquired from some literature source is supplied with a
reference to this source. Information about application context is classified using
keywords at the beginning of the statement. The classes indicate aspects of
knowledge elicitation to which the statements refer. For instance, KTYP stands
for knowledge types and marks statements like “Is appropriate for eliciting
facts, conceptual structure, causal knowledge, and justification” in the advan-
tages slot of Table 2. ELIC and EXPT mark statements that refer to the roles of
elicitor and expert, respectively.

The experience base currently contains about 30 experience packages. Focus is
put on KEL techniques for elicitation from individual human experts in interview-
like sessions. Examples are semi-structured interview, retrospective case descrip-
tion, list-related tasks, teachback, construct elicitation using repertory grids, and
laddering.

The information contained in the experience packages has been gained from

multiple literature sources that survey KEL techniques or report on experiences
from using some of them (cf. [1][2] [17] [3]). The raw information that has been

Copyright [J Fraunhofer IESE 1998

An Experience Base of
Knowledge Elicitation
Techniques

found in these texts has been categorised and structured gradually to gain the
experience packages. However, once the experience package structure had
been established, it was quite straight-forward to add new KEL techniques or to
extend the information about already catalogued ones.

The experience packages can be used by software engineering professionals in
multiple ways to gain an overview over KEL techniques, and to select some that
meet the requirements of the tasks they have to accomplish. The structure of
the experience packages and the keywords that classify each statement allow to
search or browse the information for various aspects or subject topics. A KA
method that illustrates very well how individual KEL techniques can be inte-
grated in a systematic manner has been presented by Briand et al. [11].

The experience base is extended and updated gradually. Currently, it is provided
as versioned electronic documents with some basic hypertext functionality to
access structure elements or indexed parts of experience packages. Our future
plans are to transfer them into HTML format and offer them as an on-line expe-
rience base through the intranet. In addition, we are about to implement the
experience base in a prototype knowledge management system that is special-
ised toward decision support for the selection of SE technologies during project
planning. This requires a more formal knowledge representation which is also
appropriate for supporting retrieval of experience packages using case-based
reasoning (CBR) tools [18] [19] [20].

Copyright [J Fraunhofer IESE 1998 1 3

A KA methodology for ESE

4 A KA methodology for ESE

Table 3:
Overview of the KA
methodology

14

The further dissemination and implementation of systematic knowledge acquisi-
tion practices in experimental software engineering requires an appropriate
methodological framework. This section suggests a methodology for guiding
the development and application of customised KA methods in ESE. The meth-
odology starts with a characterisation of KA tasks (cf. Table 1) as starting point
and selects appropriate KEL techniques from the experience base (cf. Section 3).
It thus integrates the two other elements of our approach that have been intro-
duced in the previous sections.

Table 3 depicts the structure of the methodology. It involves four phases and
twelve steps. The initial phase is a pre-study for gaining background information
and requirements on design and application of the KA method. The second
phase, KEL strategy development, is the core part of the methodology. It defines
the KEL strategy. The two subsequent phases are knowledge elicitation and
modelling. Hence they address the application of the KA method.

Phase Step / Sub-Step
Pre-Study Conduct pre-study on subject topic

Conduct pre-study on usage processes

Identify knowledge representation

KEL Strategy Identify requirements and candidate KEL techniques
Development Characterise application situation

Identify applicable KEL technique

Identify further pre-study needs

Define KEL strategy
Select KEL techniques
Integrate KEL techniques
Document KEL strategy

Develop support tools and validate KEL strategy
Identify requirements on KEL execution
Develop support tools

alidate KEL strategy and support tools

Knowledge-Elicitation Plan knowledge elicitation

Prepare knowledge elicitation

Conduct knowledge elicitation

Knowledge-Modelling Construct knowledge model

alidate knowledge model

Release knowledge model

Due to space restrictions, the following sub-sections can only outline the overall
structure of the methodology. A more detailed description can be found in [21].

Copyright [J Fraunhofer IESE 1998

A KA methodology for ESE

4.1 Pre-Study

The first phase of the methodology aim at making the knowledge engineer
familiar with the subject topic and the usage processes of the knowledge mod-
els to be acquired. Pre-study of the subject topic involves an investigation of rel-
evant and available knowledge sources. Based on this information, a suitable
knowledge representation formalism is determined or designed from scratch.

4.2 KEL Strategy Development

The core phase of the methodology is the actual design of the KEL strategy. It
starts with identification of requirements and candidate KEL techniques. If fur-
ther pre-study is needed, exploratory knowledge elicitation activities should be
planned explicitly. The identification of appropriate techniques can be supported
by an experience base of KEL techniques (cf. Section 3). The individual tech-
niques identified must then be integrated, and the method must be defined.
Finally, support tools for knowledge elicitation must be provided, and the KEL
strategy and its support tools must be validated.

Explicit and operational definition of KA methods is recommended, because it
eases the dissemination and re-use of the methods. It also facilitates the plan-
ning of KA activities in the context of software projects, which have often tight
schedules. Furthermore, in experimental software engineering the KA methods
might be applied by persons with little experience in knowledge acquisition. So
operational methods can provide beneficial guidance and support.

4.3 Knowledge Elicitation

The actual execution of a customised KA method starts with knowledge elicita-
tion. Knowledge elicitation activities must be planned in accordance with the
schedule of the software projects in which the experts are working, and by
which the knowledge will be used later. Preparation activities involve customisa-
tion of questionnaires and providing the technical infrastructure for knowledge
elicitation. During knowledge elicitation sessions, notes or records need to be
taken. Possibly some intermediate or mediating knowledge model is being
developed.

4.4 Knowledge Modelling

The knowledge modelling phase translates the KEL results into an appropriate

knowledge model. The model needs to be validated thoroughly, because many
ESE tasks may build on it. Finally, the validated knowledge model is released and
disseminated. In some cases release and dissemination of KA results can become

Copyright [J Fraunhofer IESE 1998 1 5

A KA methodology for ESE

a major task. For instance, the dissemination of acquired good design practices
may require an entire training programme.

4.5 Example KA Method

The methodology can be illustrated by a method for software development
effort estimation called COBRA (COst estimation, Benchmarking, and Risk
Assessment) [11]. COBRA applies several KEL techniques in an integrated and
very systematic way. It has an operational definition and is based on explicit
rationales. COBRA has been applied successfully in industrial environments.
Thus it supports the appropriateness and validity of the KA methodology.

16 Copyright [J Fraunhofer IESE 1998

Conclusions and Future Work

5 Conclusions and Future Work

Many ESE tasks involve some kind of KA activity. These activities can be
expected to become more effective, if advanced KA methods will be used in a
systematic manner. Therefore KA methods need to be developed that are cust-
omised to the specific requirements of the respective ESE tasks. In general, the
dissemination of KA methods in ESE should be fostered.

We have provided a survey of KA applications in ESE. It shows that these appli-
cations can have very different characteristics and that they impose quite differ-
ent requirements on the KA method to be used. For this reason, a methodology
has been presented for the development of customised KA methods. The design
of such methods is facilitated by an experience base of KEL techniques.

The experience base represents an ESE-specific knowledge management appli-
cation. It is accessible for consultants and researchers within Fraunhofer IESE. It
supports the dissemination of KEL techniques in experimental software engi-
neering and the accumulation of experiences about their use.

The approach presented in this paper has been and is being applied at Fraun-
hofer IESE. Main focus of our work is the acquisition of experiential knowledge
in experimental software engineering. Example applications are the acquisition
of product/process dependency models [22], lessons learnt about software engi-
neering processes [23], and application prerequisites for SE technologies [24].
Related work addresses the elicitation of software process models [25] as well as
cost estimation, bechmarking, and risk assessment of software projects [11].

Future work will address the extension of the experience base of KEL tech-
niques. Additional KEL technologies and experience statements will be added.
We have also started to implement the experience base using a knowledge
management tool infrastructure. This will allow for case-based knowledge
retrieval and interactive decision support for selecting KEL techniques. We are
also continuing to develop further our suit of customised KA methods. Addi-
tional information about these activities is provided in [26].

Acknowledgements

We would like to thank Ulrike Becker-Kornstaedt, Frank Bomarius, Lionel Briand,
Khaled El Emam, Wolfgang Mdller, and Barbara Paech for their valuable feed-
back on earlier versions of this paper. Sonnhild Namingha has helped us very
much to improve our use of the English language.

Copyright [J Fraunhofer IESE 1998 1 7

References

6

18

References

(1]

(2]

3]

(4]

(5]

6]

[7]

(8]

(9]

[10]

[11]

E. S. Cordingly. Knowledge elicitation techniques for knowledge-
based systems. In D. Diaper, editor, Knowledge Elicitation: Princi-
ples, Techniques and Applications, chapter 3, pages 89—-176. Ellis
Horwood, 1989.

N. J. Cooke. Varieties of knowledge elicitation techniques. Interna-
tional Journal of Human-Computer Studies, 41(6):801-849, 1994.

M. Welbank. Knowledge acquisition: a survey and british telecom
experience. In T. Addis, J. Boose, and B. Gaines, editors, Proceed-
ings of the First European Workshop on Knowledge Acquisition for
Knowledge Based Systems. Reading University, 1987.

V. R. Basili, G. Caldiera, and H. D. Rombach. Experience Factory. In
J. J. Marciniak, editor, Encyclopedia of Software Engineering,
volume 1, pages 469-476. John Wiley & Sons, 1994,

H. D. Rombach, V. R. Basili, and R. W. Selby, editors. Experimental
Software Engineering Issues: A critical assessment and future direc-
tions. Lecture Notes in Computer Science Nr. 706, Springer—Verlag,
1992.

F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, editors. Building
Expert Systems. Addison-Wesley, 1983.

M. A. Musen. An overview of knowledge acquisition. In J.-M. David,
J.-P. Krivine, and R. Simmons, editors, Second generation expert sys-
tems, pages 405-427. Springer, 1993.

R. L. Glass. Expert systems: Failure or success? Journal of Systems
and Software, 43(1):1-2, October 1998.

P. Grogono. Software engineering for expert systems. In

J. Liebowitz, editor, The Handbook of Applied Expert Systems,
pages 25-1-25-15. CRC Press, 1998.

H. Eriksson. A survey of knowledge acquisition techniques and tools
and their relationship to software engineering. Journal of Systems
and Software, 19:97-107, 1992.

L. C. Briand, K. El Emam, and F. Bomarius. COBRA: A hybrid

Copyright [J Fraunhofer IESE 1998

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Copyright [J Fraunhofer IESE 1998

References

method for software cost estimation, benchmarking, and risk
assessment. In Proceedings of the Twentieth International Confer-
ence on Software Engineering, pages 390-399, Kyoto, Japan, April
1998. IEEE Computer Society Press.

D. N. Wilson and T. Hall. Perceptions of software quality: A pilot
study. Software Quality Journal, 7(1):67-75, 1998.

J. Angele and R. Studer. Requirements specification and model-
based knowledge-engineering. Softwaretechnik-Trends: Mitteilun-
gen der Gl-Fachgruppen ‘Software-Engineering’ und ‘Require-
ments-Engineering’, 15(3):4-16, October 1995.

M. L. G. Shaw and B. R. Gaines. Requirements acquisition. /EEE
Software Engineering Journal, pages 149-165, May 1996.

K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenarios in sys-
tem development: Current practice. IEEE Software, March/April
1998.

N. A. Maiden and C. Ncube. Acquiring cots software selection
requirements. /EEE Software, March/April 1998.

R. Hoffman, N. Shadbolt, M. Burton, and G. Klein. Eliciting knowl-
edge from experts: A methodological analysis. Organizational
Behaviour and Human Decision Processes, 62(2):129-158, 1995.

K.-D. Althoff, F. Bomarius, and C. Tautz. Using case-based reason-
ing technology to build learning organizations. In Proceedings of
the the Workshop on Organizational Memories at the European
Conference on Artificial Intelligence ‘98, Brighton, England, August
1998.

K.-D. Althoff, A. Birk, C. G. von Wangenheim, and C. Tautz. Case-
based reasoning for experimental software engineering. In M. Lenz,
B. Bartsch-Spérl, H.-D. Burkhard, and S. Wess, editors, Case-Based
Reasoning Technology - From Foundations to Applications, pages
235-254. Springer-Verlag, 1998.

C. Gresse von Wangenheim, A. M. Ramos, K.-D. Althoff, R. M. Bar-
cia, R. Weber, and A. Martins. Case-based reasoning approach to
reuse of experiential knowledge in software measurement pro-
grams. In L. Gierl, editor, Proceedings of the Sixth German Work-
shop on Case-Based Reasoning, Berlin, Germany, 1998.

A. Birk. A knowledge acquisition methodology for use in experi-

19

References

20

[22]

(23]

[24]

[25]

[26]

mental software engineering. Technical Report IESE-Report No.
062.98/E, Fraunhofer Institute for Experimental Software Engineer-
ing, Kaiserslautern (Germany), 1998.

PROFES. ESPRIT project 23239 (Product-FOcused improvement of
Embedded Software processes). http://www.ele.vtt.fi/profes/.

A. Birk and C. Tautz. Knowledge management of software engi-
neering lessons learned. In Proceedings of the Tenth Conference on
Software Engineering and Knowledge Engineering, San Francisco
Bay, CA, USA, June 1998. Knowledge Systems Institute, Skokie, Illi-
nois, USA.

A. Birk. Modelling the application domains of software engineering
technologies. In Proceedings of the Twelfth IEEE International Auto-
mated Software Engineering Conference. |EEE Computer Society
Press, 1997.

U. Becker, D. Hamann, and M. Verlage. Descriptive Modeling of
Software Processes. In Proceedings of the Third Conference on Soft-
ware Process Improvement (SPl '97), Barcelona, Spain, December
1997.

AXIS. Acquisition of Experiential Knowledge in Software Engineer-
ing. http://www.iese.fhg.de/axis.html.

Copyright [J Fraunhofer IESE 1998

Document Information

Title:

Date:
Report:
Status:

Distribution:

Applications of Knowledge
Acquisition in Experimen-
tal Software Engineering

November 1998
IESE-59.98/E
Final

Public

Copyright 1998, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial

purposes.

