Skip to main content

On the Chvátal Rank of Certain Inequalities

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1610))

Abstract

The Chvátal rank of an inequality axb with integral components and valid for the integral hull of a polyhedron P, is the minimum number of rounds of Gomory-Chvátal cutting planes needed to obtain the given inequality. The Chvátal rank is at most one if b is the integral part of the optimum value z(a) of the linear program max {ax : xP}. We show that, contrary to what was stated or implied by other authors, the converse to the latter statement, namely, the Chvátal rank is at least two if b is less than the integral part of z(a), is not true in general. We establish simple conditions for which this implication is valid, and apply these conditions to several classes of facet-inducing inequalities for travelling salesman polytopes.

Research supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balas, S. Ceria and G. Cornuéjols (1993), “A lift-and-project cutting plane algorithm for mixed 0–1 programs,” Mathematical Programming 58, 295–324.

    Article  MathSciNet  Google Scholar 

  2. E. Balas and M.J. Saltzman (1989), “Facets of the three-index assignment polytope,” Discrete Applied Mathematics 23, 201–229.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Bockmayr, F. Eisenbrand, M. Hartmann and A.S. Schulz (to appear), “On the Chvátal rank of polytopes in the 0/1 cube,” to appear in Discrete Applied Mathematics.

    Google Scholar 

  4. S.C. Boyd and W.H. Cunningham (1991), “Small travelling salesman polytopes,” Mathematics of Operations Research 16, 259–271.

    MATH  MathSciNet  Google Scholar 

  5. S.C. Boyd, W.H. Cunningham, M. Queyranne and Y. Wang (1995), “Ladders for travelling salesmen,” SIAM Journal on Optimization 5, 408–420.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.C. Boyd and W.R. Pulleyblank (1991), “Optimizing over the subtour polytope of the travelling salesman problem,” Mathematical Programming 49, 163–187.

    Article  MathSciNet  Google Scholar 

  7. A. Caprara and M. Fischetti (1996), “0–1/2 Chvátal-Gomory cuts,” Mathematical Programming 74, 221–236.

    Article  MathSciNet  Google Scholar 

  8. A. Caprara, M. Fischetti and A.N. Letchford (1997), “On the separation of maximally violated mod-k cuts,” DEIS-OR Technical Report OR-97-8, Dipartimento di Elettronica, Informatica e Sistemistica Università degli Studi di Bologna, Italy, May 1997.

    Google Scholar 

  9. S. Ceria (1993), “Lift-and-project methods for mixed 0–1 programs,” Ph.D. dissertation, Carnegie-Mellon University.

    Google Scholar 

  10. V. Chvátal (1973), “Edmonds polytopes and a hierarchy of combinatorial problems,” Discrete Mathematics 4, 305–337.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Chvátal, W. Cook and M. Hartmann (1989), “On cutting-plane proofs in combinatorial optimization,” Linear Algebra and Its Applications 114/115, 455–499.

    Article  Google Scholar 

  12. P.D. Domich, R. Kannan and L.E. Trotter, Jr. (1987), “Hermite normal form computation using modulo determinant arithmetic,” Mathematics of Operations Research 12, 50–59.

    MATH  MathSciNet  Google Scholar 

  13. J. Edmonds, L. Lovász and W.R. Pulleyblank (1982), “Brick decompositions and the matching rank of graphs,” Combinatorica 2, 247–274.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Eisenbrand (1998), “A note on the membership problem for the elementary closure of a polyhedron,” Preprint TU-Berlin No. 605/1998, Fachbereich Mathematik, Technische Universität Berlin, Germany, November 1998.

    Google Scholar 

  15. F. Eisenbrand and A.S. Schulz (1999), “Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube”, this Volume.

    Google Scholar 

  16. M. Fischetti (1992), “Three facet-lifting theorems for the asymmetric traveling salesman polytope”, pp. 260–273 in E. Balas, G. Cornuéjols and R. Kannan, eds, Integer Programming and Combinatorial Optimization (Proceedings of the IPCO2 Conference), G.S.I.A, Carnegie Mellon University.

    Google Scholar 

  17. M. Fischetti (1995), “Clique tree inequalities define facets of the asymmetric travelling salesman polytope,” Discrete Applied Mathematics 56, 9–18.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Giles and L.E. Trotter, Jr. (1981), “On stable set polyhedra for K 1,3-free graphs,” Journal of Combinatorial Theory Ser. B 31, 313–326.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Grötschel and M.W. Padberg (1985), “Polyhedral theory,” pp. 251–305 in: E.L. Lawler et al., eds., The Travelling Salesman Problem, Wiley, New York.

    Google Scholar 

  20. M. Grötschel and W.R. Pulleyblank (1986), “Clique tree inequalities and the symmetric travelling salesman problem,” Mathematics of Operations Research 11, 537–569.

    MATH  MathSciNet  Google Scholar 

  21. M. Hartmann (1988), “Cutting planes and the complexity of the integer hull,” Ph.D. thesis, Cornell University.

    Google Scholar 

  22. E.L. Johnson (1965), “Programming in networks and graphs”, Research Report ORC 65-1, Operations Research Center, University of California-Berkeley.

    Google Scholar 

  23. G.L. Nemhauser and L.A. Wolsey (1988), Integer and Combinatorial Optimization, Wiley, New York.

    MATH  Google Scholar 

  24. M. Queyranne and Y. Wang (1995), “Symmetric inequalities and their composition for asymmetric travelling salesman polytopes,” Mathematics of Operations Research 20, 838–863.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Schrijver (1980), “On cutting planes,” in: M. Deza and I.G. Rosenberg, eds., Combinatorics 79 Part II, Ann. Discrete Math. 9, 291–296.

    Google Scholar 

  26. A. Schrijver (1986), Theory of Linear and Integer Programming, Wiley, Chichester.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmann, M., Queyranne, M., Wang, Y. (1999). On the Chvátal Rank of Certain Inequalities. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol 1610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48777-8_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-48777-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66019-4

  • Online ISBN: 978-3-540-48777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics