Skip to main content

Optimizing over All Combinatorial Embeddings of a Planar Graph (Extended Abstract)

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1610))

Abstract

We study the problem of optimizing over the set of all combinatorial embeddings of a given planar graph. Our objective function prefers certain cycles of G as face cycles in the embedding. The motivation for studying this problem arises in graph drawing, where the chosen embedding has an important influence on the aesthetics of the drawing. We characterize the set of all possible embeddings of a given biconnected planar graph G by means of a system of linear inequalities with {0,1}-variables corresponding to the set of those cycles in G which can appear in a combinatorial embedding. This system of linear inequalities can be constructed recursively using SPQR-trees and a new splitting operation. Our computational results on two benchmark sets of graphs are surprising: The number of variables and constraints seems to grow only linearly with the size of the graphs although the number of embeddings grows exponentially. For all tested graphs (up to 500 vertices) and linear objective functions, the resulting integer linear programs could be generated within 10 minutes and solved within two seconds on a Sun Enterprise 10000 using CPLEX.

Partially supported by DFG-Grant Mu 1129/3-1, Forschungsschwerpunkt “Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen”

Supported by the Graduiertenkolleg “Effizienz und Komplexität von Algorithmen und Rechenanlagen”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing, 25(5):956–997, October 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. Lecture Notes in Computer Science, 1272:331–344, 1998.

    Google Scholar 

  3. D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal on Discrete Mathematics, 6(3):335–352, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–326, 1997.

    MATH  Google Scholar 

  7. P. Eades and P. Mutzel. Algorithms and theory of computation handbook, chapter 9 Graph drawing algorithms. CRC Press, 1999.

    Google Scholar 

  8. I. Fary. On straight line representing of planar graphs. Acta. Sci. Math.(Szeged), 11:229–233, 1948.

    MathSciNet  Google Scholar 

  9. A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. Lecture Notes in Computer Science, 894:286–297, 1995.

    Google Scholar 

  10. J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM Journal on Computing, 2(3):135–158, August 1973.

    Article  MathSciNet  Google Scholar 

  11. S. MacLane. A combinatorial condition for planar graphs. Fundamenta Mathematicae, 28:22–32, 1937.

    MATH  Google Scholar 

  12. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. J. Woeginger. personal communications, July 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mutzel, P., Weiskircher, R. (1999). Optimizing over All Combinatorial Embeddings of a Planar Graph (Extended Abstract). In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds) Integer Programming and Combinatorial Optimization. IPCO 1999. Lecture Notes in Computer Science, vol 1610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48777-8_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-48777-8_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66019-4

  • Online ISBN: 978-3-540-48777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics