
A Note on the Limits of

Collusion-Resistant Watermarks

Funda Ergun1, Joe Kilian2, and Ravi Kumar3

1 Bell Laboratories, 700 Mountain Avenue, Murray Hill, NJ 07974
fergun@research.bell-labs.com

2 NEC Research Institute, 4 Independence Way, Princeton, NJ
joe@research.nj.nec.com

3 IBM Almaden Research Center/K53C San Jose , CA 95120-6099
ravi@almaden.ibm.com

Abstract. In one proposed use of digital watermarks, the owner of a
document D sells slightly different documents, D1, D2, . . . to each buyer;
if a buyer posts his/her document Di to the web, the owner can iden-
tify the source of the leak. More general attacks are however possible
in which k buyers create some composite document D∗; the goal of the
owner is to identify at least one of the conspirators.
We show, for a reasonable model of digital watermarks, fundamental lim-
its on their efficacy against collusive attacks. In particular, if the effective
document length is n, then at most O(

p
n/ ln n) adversaries can defeat

any watermarking scheme.
Our attack is, in the theoretical model, oblivious to the watermarking
scheme being used; in practice, it uses very little information about the
watermarking scheme. Thus, using a proprietary system seems to give
only a very weak defense.

Keywords: Watermarking, Intellectual Property Protection, Collusion
Resistance.

1 Introduction

1.1 The General Problem

The very properties that have made digital media so attractive present difficult,
not clearly surmountable, security problems. The ability to cheaply copy and
transmit perfect copies of text, audio, and video opens up new avenues both
for electronic commerce and for electronic piracy. The advent of ubiquitous high
speed networks and network caching algorithms further amplifies this problem.
Anyone will have the capability to cheaply distribute any movie, song, book, or
picture (which we will generically call a document) in their possession to anyone
else on the planet. The challenge is to maintain intellectual property in this
environment.

There are a number of approaches to this problem; we concentrate on meth-
ods related to digital watermarking, also known as digital fingerprinting. In one
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general approach, the media to be distributed is altered so that it contains a
hidden “do not copy” signal (the “watermark”). Most or all of the hardware
for viewing, copying, or transmitting the media look for this signal and prevent
illicit use. Two major problems with this approach are preventing the construc-
tion of illicit hardware that ignores the safeguards and preventing the erasure
of the hidden signal. The latter problem is aggravated by the fact that one has
to effectively distribute oracles (e.g., copying machines) that give feedback as to
whether the signal can still be detected.

We know of no such watermarking scheme that has survived a serious attack.
Indeed, with one commercially distributed scheme for watermarking images, the
mark was so delicate that owners would accidentally destroy it themselves (such
as by resizing the image prior to selling it).

A less ambitious use of watermarking is to identify pirates after the fact.
That is, nothing prevents a pirate from anonymously posting ones intellectual
property to the web, but one should be able to identify who did so. The general
approach is to, given a document D, perturb it in an unobtrusive manner to
generate documents D1, D2, . . . , giving each buyer a distinct copy. If the i-th
buyer posts Di to the web, the document owner can identify him/her as the
pirate.

Innumerable schemes have been proposed for both uses; we refer to [3] for a
discussion of many of these schemes.

1.2 Modeling Collusion Attacks

Of course, a pirate may not be so cooperative as to simply post its document
unchanged. It may attempt to alter it or, perhaps in concert with others, combine
several documents to produce a document that cannot be linked with any of the
“original” marked documents.

The first theoretical modeling and treatment of collusion of attacks was given
by Boneh and Shaw [1]. We instead use a model suggested by Cox et. al. [3]. We
refer to [3,5] for a more extensive introduction to this model, described briefly
below.

First, we model a document D as a sequence of real numbers 〈D1, . . . , Dn〉.
This should not be thought of as a literal and complete description of the docu-
ment, but as an indication of the values of “critical values” that might be changed
by the watermarking process. For example, they may be coefficients in a wavelet
decomposition of an image or audio stream. In [3], it is posited that these should
be orthogonal, independent attributes; [5] primarily analyzes the case where they
are uniformly distributed. We do not make any such assumptions.

We model collusion attacks as follows. First, we model a watermarking scheme
as a pair of functions Mark and Detect. Mark(D, m) defines a distribution on se-
quences D1, . . . , Dm, where m is the total number of documents produced; Mark
may be viewed as a randomized procedure for producing D1, . . . , Dm.

A t-collusion attacker is modeled by a probabilistic polynomial time proce-
dure Attack, and a distribution on distinct i1, . . . , it. In all of our discussions we
assume that i1, . . . , it is chosen uniformly from all t-element subsets. On input
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(i1, . . . , it, D
i1 , . . . , Dit),

Attack generates a distribution on its output, D∗.
On input D, D1, . . . , Dm, D∗, Detect returns a distribution on its output i ∈

[1, m]∪∅. Returning an index indicates an accusation; returning ∅ indicates that
no one has been caught. For notational simplicity, we omit the D, D1, . . . , Dm

arguments when they are fixed or clear, writing simply Detect(D∗).
We now specify our requirements for Mark, Detect, and Attack. First, we

consider the fidelity of the marked documents and the attacked documents. We
require that d(Di, D) ≤ ∆/2, where d denotes the Euclidean metric. We require
a successful attack to achieve d(D∗, D) ≤ ∆′/2; the closer ∆′ is to ∆, the better
the attack. Intuitively, ∆/2 indicates the degree to which the watermarking
algorithm is willing to distort D, and ∆′/2 indicates the amount of distortion
past which the document is no longer worth stealing or protecting.

(We use ∆/2 instead of ∆ to simplify the analysis. By the triangle inequality,
our condition enforces that d(Di, Dj) ≤ ∆; this turns out to be the more natural
condition to consider.)

Next, we consider the efficacy of the detection algorithm. Detect succeeds if
it returns an i ∈ {i1, . . . , it}. Detect can fail in two ways: (i) The owner can
fail to identify any of the pirates by returning ∅ (a false negative), or (ii) the
owner can falsely conclude that an innocent person is a pirate (a false positive).
A false negative is unfortunate; a false positive is catastrophic. If one fails to
catch a pirate 90% of the time, the 10% may deter some (but not all), but if
one misidentifies an innocent person 1% of the time one may not be able to ever
credibly accuse anyone of piracy.

1.3 Our Result

We show a generic attack procedure Attack that defeats all watermarking schemes
for the above model. It is oblivious to the Mark and Detect schemes. It has the
following properties:

1. The attack uses t = α
ε

√
n/ lnn documents, where α is a parameter (the

larger the parameter, the more effective the attack), and ε controls the fidelity
of the attack (we ignore integer rounding issues).

2. With high probability, it produces an attack document D∗ such that

d(D∗, D) ≤ (∆/2)(1 + 2ε2 + o(1)).

3. Suppose Detect succeeds with probability above, say 2/
√

lnn, then it must
incur a false positive probability of Ω(n−c), for some c, where c depends on
α. More general tradeoffs are implied by our analysis.

1.4 Related Work

Boneh and Shaw introduced the first formal model of collusion resistance. They
consider a more abstract model in which one may insert a sequence of marks into
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a document; each mark has a value associated with it (most usually boolean) .
They assume that if for all the documents available to the attacker, the i-th mark
has the same value, then the attacker cannot remove this mark. If, however, two
of the documents disagree on the value of the i-th mark, the attacker can change
its value as it sees fit. In this model, they show upper and lower bounds for the
collusion resistance as a function of the number of marks. Further improvements
and additions to their basic scheme appear in [9,10,8].

It is impossible to directly compare this model and its models with that of
Cox et. al. The model of [3] gives a more low-level model for watermarking. One
pleasing aspect of our result is that it essentially matches to within a constant
factor some lower bounds on collusion resistance proven by [5]. For the case where
m = nO(1), they show that one can achieve collusion resistance of Ω(

√
n/ lnn),

given a very specialized assumption about the distribution of D (or given a very
restricted class of attacks). Our bounds show that this is essentially the best one
can hope for, regardless of the assumptions one makes about the distribution of
the documents. In contrast, there is a substantial gap in the upper and lower
bounds known for the Boneh-Shaw model.

Along a similar vein, Chor, Fiat, and Naor [2] introduce traitor tracing
schemes. In their scenario, a large amount of data is broadcast, or made publicly
available (say by DVD disks) in encrypted form; keys allowing the data to be
decrypted are individually sold. Subsequent work in this area includes [6,7]; a
further twist on key protection is given in [4]. In one respect, these models have
a similar flavor to the scenario we consider, in that one wishes to identify those
who publish or resell their keys. This work, however, is intended for the regime
where the plaintext is so large that it is hard to (re)broadcast it. Watermarking
hopes to protect much smaller data (hundreds of kilobytes).

1.5 Road Map

In Section 2 we describe our attack. In Section 3 we analyze its efficacy. In
Section 4 we present conclusions and open problems.

2 The Attack

Our attack is parameterized by a collusion parameter t and a noise parameter
σ. We will analyze the case where t = (α/ε)

√
n/ lnn, α is some (typically con-

stant) parameter, and σ = ε∆/(2
√

n), where n is the length of the attacked
document; i.e., the dimension of D, and ε is a (typically small constant) pa-
rameter. Let N(µ, σ2) be the Gaussian (normal) distribution with mean µ and
standard deviation σ.

Described in words, the colluding attack is to average the t vectors and
perturb with a random Gaussian noise at each component. σ is to be determined
later.
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Attackt,σ(i1, . . . , it, D
i1 , . . . , Dit)

1. First, compute D∗ =
1
t

t∑
j=1

Dij , where the sum is performed coordinate-wise.

That is, each coordinate of D∗ is set to be the average of the corresponding
values of the sample documents.

2. Let n denote the length of D∗. Choose R = 〈r1, . . . , rn〉 by choosing rj

independently according to N(0, σ2), for 1 ≤ j ≤ n. Compute D∗ = D∗+R.

Observe that in the abstract model, Attack uses no information about Mark,
except for σ. We discuss more practical issues in Section 4.

There is a tension in our choice of t and σ. As we will see, the larger the values
of t and σ, the more effective the attack. However, we would like to minimize
the number t of adversaries (document copies) needed, and increasing σ weakens
the fidelity of the attacked copy.

3 Analysis

We analyze the efficacy of Attack as a function of the parameters t and σ. First
we analyze the fidelity of the attack, and then we show, for any choice of Detect,
a tradeoff between the probability that it generates a false positive and the
probability that it generates a false negative.

3.1 The Fidelity of the Attack

For the rest of our discussion, high probability mean with probability 1 − o(1)
as n grows large.

Lemma 1. Suppose that σ = ε∆/
√

n. Then with high probability, d(D, D∗) ≤
(∆/2)(1 + 2ε2 + o(1)).

Proof. (Sketch) Consider the triangle formed by D, D∗, and D∗. Let a=d(D, D∗),
b = d(D∗, D∗), and c = d(D, D∗). Let θ be \DD∗D∗. Then c2 = a2 + b2 −
2ab cos θ. First, by the convexity of the Euclidean norm, it follows that a ≤ ∆/2
(D∗ is the centroid of points all within ∆/2 of D). Now, b2 = 〈r2

1 , . . . , r2
n〉

(where ri is as in Attack); hence, b2 is a χ2 distribution with mean σ2n = ε2∆2.
Using simple bounds on the tail of χ2 distributions, we have that with high
probability, b2 ≤ (1 + o(1))ε2∆2. It remains to bound the magnitude of cos θ.
By the spherical symmetry of the distribution on R, θ has the same distribution
as the angle between two random unit rays from the origin. For this case, it is
well known that | cos θ| is O(ln n/

√
n) with high probability. Hence, with high

probability,

c2 ≤ (∆/2)2 + (1 + o(1))ε2∆2 + O(ε∆2 lnn/
√

n).

The lemma follows.
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3.2 A Tradeoff between Errors

Attack ignores the values of i1, . . . , it. To simplify our notation,we assume with-
out loss of generality that the attacking coalition is 1, . . . , t.

Suppose on D∗ Detect outputs a valid value of i ∈ {1, . . . , t} with probability
at least ρ, where the probability is taken over the randomness used by Attack and
any randomness used by Detect. Assume without loss of generality that Player 1
is the player most often detected. Thus, Detect(D, D1, . . . , Dm, D∗) = 1, with
probability ≥ ρ/t. The idea is to produce another document D′ with a slightly
different colluding set that does not include Player 1. When t is sufficiently
large, D∗ and D′ cannot be reliably distinguished by Detect (or any other dis-
tinguisher). Hence Detect will output i = 1, yielding a false positive, with an
unacceptably large probability.

Consider the output of Attack on D2, . . . , Dt+1. We define D′ and D′ by

D′ =
1
t

t+1∑
i=2

Di, and

D′ = D′ + N(0, σ2)n.

That is, D′ is distributed according to the output of Attack. Note that D1 is not
part of the set that produces D′.

Fixing, D, D1, . . . , Dm, we consider D′ and D∗ as defining probability mea-
sures on the document space. We claim that Detect(D′) still outputs 1 with
unacceptably high probability if Detect(D∗) outputs 1 with a reasonably large
probability.

We now proceed to show that there is a tradeoff between the false positive and
false negative probabilities. First we define a parameterized set of problematic
documents for which the false positive probability is low.

Definition 2. Given probability measure D′ and D∗, and a parameter γ, we
define the bad set Bγ by

Bγ = {x | Pr
x←D′

[x] ≤ γ Pr
x←D∗

[x]}.

This set is bad for the attacker, because Detect can safely output 1 without
incurring too large a probability of producing a false positive. Lemma 3 bounds
the probability that Detect makes a false positive as a function of γ.

Lemma 3. Prx←D′ [Detect(x) = 1] ≥ γ · (ρ
t − PrD∗ [Bγ ]

)
.

Proof. We have

Pr
x←D∗

[Detect(x) = 1 ∧ x 6∈ Bγ ] ≥ Pr
x←D∗

[Detect(x) = 1] − Pr
x←D∗

[x ∈ Bγ ]

≥ ρ

t
− Pr

x←D∗
[x ∈ Bγ ] .



146 Funda Ergun, Joe Kilian, and Ravi Kumar

Thus,

Pr
x←D′

[Detect(x) = 1] ≥ Pr
x←D′

[Detect(x) = 1 ∧ x 6∈ Bγ ]

≥ γ · Pr
x←D∗

[Detect(x) = 1 ∧ x 6∈ Bγ ]

≥ γ ·
(ρ

t
− Pr

x←D∗
[x ∈ Bγ ]

)
.ut

We now obtain, for some reasonable setting of parameters, a lower bound on the
false positive probability.

Lemma 4. Let t ≥ α
ε

√
n/ lnn and σ = ε∆/(2

√
n). If Prx←D∗ [Detect(x) = 1] ≥

ρ/t, for 1/ρ = o(lnn), then

Pr
x←D′

[Detect(x) = 1] ≥ ε

α
ρn−β−1/2

√
lnn,

where β = (2/α)(1 + 1/α) and n is sufficiently large.

Proof. For the proof, we set some of the parameters in the expression given in
Lemma 3 and use the lemma to lower bound the probability of a false positive.
The value of γ > 0 must be chosen to balance between two competing consider-
ations imposed by the γ term and the ρ/t − Prx←D∗ [x ∈ Bγ ] term. Intuitively,
when γ is close to 1, then x is often in Bγ , but this is not so advantageous for
the Detect; when γ is small, it is indeed good for Detect to have x ∈ Bγ , but
this hardly ever happens.

We will choose γ such that PrD∗ [Bγ ] ≤ ρ/(2t); γ will be nβ for some constant
β. Since Prx←D∗ [Detect(x) = 1] ≥ ρ/t, Prx←D∗ [Detect(x) = 1 ∧ x 6∈ Bγ ] ≥
ρ/(2t). Then the probability of a false positive for document instances from D′,
will be at least γρ/(2t).

Although each point x we consider is an n-dimensional quantity, we can ex-
ploit the spherical symmetry of n-dimensional Gaussian distributions as follows.
Given a point x, let x‖ denote the projection of x onto the line L connecting
D∗ and D′. We define d‖(x) to be d(D∗, x‖) if D∗ is between x‖ and D′, and
−d(D∗, x‖) otherwise. We define d⊥(x) to be the distance from x to L.

Now, by the spherical symmetry of Gaussian distributions, we have

Pr
x←D∗

[x] = cn exp
(−d2(x, D∗)

2σ2

)
and

Pr
x←D′

[x] = cn exp
(−d2(x, D′)

2σ2

)
.

where cn is some normalization constant, depending on n. Let δ = d(D∗, D′);
note that δ ≤ ∆/t. By the Pythagorean theorem and elementary geometry, we
have

d2(x, D∗) = d2
‖(x) + d2

⊥(x) and

d2(x, D′) = (d‖(x) + δ)2 + d2
⊥(x).
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Hence,

Pr
x←D∗

[x] = cn exp−
(

d2
‖(x) + d2

⊥(x)

2σ2

)
and

Pr
x←D′

[x] = cn exp−
(

(d‖(x) + δ)2 + d2
⊥(x)

2σ2

)
.

Let b(x) def=
Prx←D′ [x]
Prx←D∗ [x]

= exp
−(2d(x‖)δ + δ2)

2σ2
. By definition, Bγ = {x | b(x) ≤

γ}. Let σ = ε∆/(2
√

n), where ε is to be determined later. Thus, δ ≤ 2σ
√

n/(εt),
hence

b(x) ≥ exp−
(

2d(x‖)
√

n

tεσ
+

2n

ε2t2

)
.

If b(x) ≤ γ, we get

d(x‖) ≥ σ

(
εt

2
√

n
ln

1
γ
−

√
n

εt

)
.

Thus, we can bound Prx←D∗ [Bγ ] as

Pr
x←D∗

[Bγ ] ≤
∫

d(x‖)≥σ
�

εt
2
√

n
ln 1

γ−
√

n
εt

�
1√
2πσ

exp
−x2

2σ2
,

which is upper bounded by

1√
2π

·

 1

εt
2
√

n
ln 1

γ −
√

n
εt


 exp−1

2

(
εt

2
√

n
ln

1
γ
−

√
n

εt

)2

,

when
εt

2
√

n
ln

1
γ
−

√
n

εt
> 0. Here, we are exploiting the spherical symmetry of our

n-dimensional Gaussian distribution: projecting onto a line gives a 1-dimensional
Gaussian distribution.

We are interested in the case when this is at most ρ/(2t). Now, t = α
ε

√
n/ lnn.

Set γ = n−β . Then, the above bound is at most

1√
2π lnn

· 1(
αβ
2 − 1

α

) · n− 1
2 (αβ

2 − 1
α )2

.

If we set β = (2/α)(1 + 1/α), then for large enough n this is less than

1√
2πn lnn

<
ρ

2t
,

for ρ = 1/o(lnn). We must also ensure that
εt

2
√

n
ln

1
γ
−

√
n

εt
> 0.

When t = α
ε

√
n/ lnn, for a given α, our choice of β = (2/α)(1 + 1/α) > 2/α2

guarantees αβ/2 − 1/α > 0.
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3.3 The Final Calculation

Lemma 4 gives a criterion for when the output of

Attack(i1, . . . , it, D
i1 , . . . , Dit)

will cause Detect to have a high false positive rate; however, these bad indices
may be very uncommon, and almost never encountered by the Detect procedure,
since we assume the adversary receives a uniformly chosen subset. It remains to
bound how likely it is for such a bad i1, . . . , it to be chosen. There are many
ways of doing so; a very simple argument will make our point.

First, we show a high false positive rate under a different distribution of
indices, defined by the following procedure.

1. Choose I = i1, . . . , it uniformly,
2. Determine the j maximizing the probability that, after Attack produces D∗,

Detect returns ij .
3. Remove ij from I and replace it with a new element, chosen at random

(without replacement), giving I ′.

The sets I, I ′ are completely analogous to {1, . . . , t} and {2, . . . , t + 1} in the
previous analysis. Lemma 2 implies that whenever Detect catches the colluders
(correctly) on set I with probability ρ, for ρ > 1/

√
lnn (and n sufficiently large),

it will falsely accuse someone with probability at least ρφ, where

φ
def=

ε

α
n−β−1/2

√
lnn

when the attack is based on set I ′. Note that the 1/
√

lnn term can be replaced
by any function f(n) where 1/ lnn = o(f(n)).

By a simple probability calculation, if Detect is successful with probability
q (catches a correct colluder), when I is chosen uniformly (as in the procedure
above), it will make a false accusation with probability (q − 1/

√
lnn)φ on sets

chosen according to the distribution of I ′ in the procedure above.
We next observe that for any t-set I∗, Pr[I ′ = I∗] ≤ t Pr[I = I∗]. That is,

the distribution on I ′ assigns at most t times the weight to some subset than
would the uniform distribution. To see this, note that for any I∗ there are at
most t(m − t) values of I in the above procedure such that I ′ could possibly be
equal to I∗ (there are that many ways of swapping an index out). For each of
these possibilities, the probability that I ′ is indeed equal to I∗ is either 0 (when
the index that needed to be swapped out was not the maximally accused index)
or exactly 1/(m− t) (the probability of swapping the right index in).

By the “flatness” property we have shown for I ′, it then follows that if the
false positive rate is (q − 1/

√
lnn)φ when the sets are chosen according to I ′,

then the false positive rate is at least (q − 1/
√

lnn)φ/t when the sets are chosen
uniformly.
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4 Conclusion and Open Problems

We have shown that in the framework of [3], O(
√

n/ lnn) adversaries suffice to
break the watermarking scheme. Within this framework, the attack is essentially
oblivious to the actual watermarking method. In practice, a real document con-
sists of much more than the n-vector assumed for the theoretical model; the
relationship between a document and its corresponding n-vector may be more
obscure. As soon as this correspondence (and a way of computing inverses) is
figured out, our attack is applicable.

An interesting open question is to generalize our result for a general class of
metrics. One criticism of the Euclidean distance is that it is not always a good
measure of fidelity; one would like to choose ones notion of fidelity.

A more important open question is to properly model the “do not copy”
problem for watermarking. Whereas for the problem we consider, the question
is what the right bound for the adversaries should be, for the other problem it
is unclear whether there is a theoretically defensible solution at all.
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