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1 Introduction

Differential cryptanalysis [6] traditionally considers characteristics or differen-
tials with relatively high probabilities and uses them to distinguish the correct
unknown keys from the wrong keys. When a correct key is used to decrypt the
last few rounds of many pairs of ciphertexts, it is expected that the difference
predicted by the differential appears frequently, while when a wrong key is used
the difference occurs less frequently.

In this paper we describe a new variant of differential cryptanalysis in which
a differential predicts that particular differences should not occur (i.e., that their
probability is exactly zero), and thus the correct key can never decrypt a pair of
ciphertexts to that difference. Therefore, if a pair is decrypted to this difference
under some trial key, then certainly this trial key is not the correct key. This is
a sieving attack which finds the correct keys by eliminating all the other keys
which lead to contradictions.

We call the differentials with probability zero Impossible differentials, and
this method of cryptanalysis Cryptanalysis with impossible differentials.

We should emphasize that the idea of using impossible events in cryptanaly-
sis is not new. It is well known [7] that the British cryptanalysis of the German
Enigma in world war I used several such ideas (for example, a plaintext letter
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could not be encrypted to itself, and thus an incorrectly guessed plaintext could
be easily discarded). The first application of impossible events in differential
cryptanalysis was mentioned in [6], where zero entries in the difference distribu-
tion tables were used to discard wrong pairs before the counting phase. A more
recent cryptanalytic attack based on impossible events was described by Biham
in 1995 in the cryptanalysis of Ladder-DES, a 4-round Feistel cipher using DES
as the F function. This cryptanalysis was published in [3], and was based on the
fact that collisions cannot be generated by a permutation. A similar technique
was latter used by Knudsen in his description of DEAL [8], a six-round Feistel
cipher using DES as the F function. Although the idea of using impossible events
of this type was natural in the context of Feistel ciphers with only a few rounds
and with permutations as the round function, there was no general methodology
for combining impossible events with differential cryptanalytic techniques, and
for generating impossible differentials with a large number of rounds.

In this paper we show that cryptanalysis with impossible differentials is very
powerful against many ciphers with various structures. We describe an impossible
differential of Skipjack [I5] which ensures that for all keys there are no pairs
of inputs with particular differences with the property that after 24 rounds of
encryption the outputs have some other particular differences. This differential
can be used to (1) attack Skipjack reduced to 31 rounds (i.e., Skipjack from
which only the first or the last round is removed), slightly faster than exhaustive
search (using 234 chosen plaintexts and 264 memory), (2) attack shorter variants
efficiently, and (3) distinguish whether a black box applies a 24-round variant
of Skipjack, or a random permutation. In a related paper [5] we describe the
application of this type of cryptanalysis to IDEA [10] and to Khufu [12], which
improves the best known attacks on these schemes.

For conventional cryptanalysis of Skipjack with smaller numbers of rounds
we refer the reader to [4] and to [9].

The paper is organized as follows: The description of Skipjack is given in
Section 2l The 24-round impossible differential of Skipjack is described in Sec-
tion 3 In Section [] we describe a simple variant of our attack against Skipjack
reduced to 25 and to 26 rounds, and in Section[§ we describe our main attack ap-
plied against Skipjack reduced to 31 rounds. Finally, in Section[d we discuss why
the attack is not directly applicable to the full 32-round Skipjack, and summa-
rize the paper. In the Appendix we describe an automated approach for finding
impossible differentials.

2 Description of Skipjack

Skipjack is an iterated blockcipher with 32 rounds of two types, called Rule A
and Rule B. Each round is described in the form of a linear feedback shift register
with additional non linear keyed G permutation. Rule B is basically the inverse
of Rule A with minor positioning differences. Skipjack applies eight rounds of
Rule A, followed by eight rounds of Rule B, followed by another eight rounds of
Rule A, followed by another eight rounds of Rule B. The original definitions of
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Fig. 1. Rule A and Rule B

Rule A and Rule B are given in Figure [II where counter is the round number
(in the range 1 to 32), and where G is a four-round Feistel permutation whose
F function is defined as an 8x8-bit S box (called the F table), and each round
of G is keyed by eight bits of the key. The key scheduling of Skipjack takes a
10-byte key, and uses four of them at a time to key each G permutation. The
first four bytes are used to key the first G permutation, and each additional
G permutation is keyed by the next four bytes cyclically, with a cycle of five
rounds.

The description becomes simpler if we unroll the rounds, and keep the four
elements in the shift register stationary. Figure 2 describes this representation
of Skipjack (only the first 16 rounds out of 32 are listed; the next 16 rounds are
identical except for the counter values). The unusual structure after round 8 (and
after round 24) is the result of simplifying the two consecutive XOR, operations
at the boundary between Rule A and Rule B rounds.

3 A 24-Round Differential with Probability Zero

We concentrate on the 24 rounds of Skipjack starting from round 5 and ending
at round 28 (i.e., without the first four rounds and the last four rounds). For
the sake of clarity, we use the original round numbers of the full Skipjack, i.e.,
from 5 to 28, rather than from 1 to 24. Given any pair with difference only in the
second word of the input of round 5, i.e., with a difference of the form (0, a, 0, 0),
the difference after round 28 cannot be of the form (b, 0,0,0), for any non-zero
a and b.

The reason that this differential has probability zero can be explained as a
miss in the middle combination of two 12-round differentials with probability 1:
As Wagner observed in [17], the second input word of round 5 does not affect the
fourth word after round 16, and given an input difference (0, a, 0, 0) the difference
after 12 rounds is of the form (¢, d, e, 0) for some non-zero ¢, d, and e. On the
other hand, we can predict the data after round 16 from the output difference of
round 28, i.e., to consider the differentials in the backward direction. Similarly
to the 12-round differential with probability 1, there is a backward 12-round
differential with probability 1. It has the difference (,0,0,0) after round 28,
and it predicts that the data after round 16 must be of the form (f,g,0,h)
for some non-zero f, g, and h. Combining these two differentials, we conclude
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that any pair with difference (0, a,0,0) after round 4 and difference (b,0,0,0)
after round 28 must have differences of the form (¢, d,e,0) = (f,g,0,h) after
round 16 for some non-zero ¢, d, e, f, g, and h. As e and h are non-zero, we
get a contradiction, and thus there cannot be pairs with such differences after
rounds 4 and 28.

One application of this differential may be to distinguish whether an encryp-
tion black box is a 24-round Skipjack (from round 5 to round 28), or a random
permutation. Identification requires only to feed the black box with 2%« pairs
(for some ) with differences of the form (0,a,0,0), and to verify whether the
output differences are of the form (b,0,0,0). If for some pair the output dif-
ference is of the form (b,0,0,0), the black box certainly does not apply this
variant of Skipjack. On the other hand, if the black box implements a random
permutation, there is only a probability of e~ that none of the 248a pairs has
a difference (b,0,0,0). For example, given 252 pairs the probability of the black
box to be incorrectly identified as this variant of Skipjack is only e~16 ~ 1077,
These pairs can be packed efficiently using structures of 2'6 plaintexts which
form 23! pairs. In these structures all the plaintexts are equal except for the sec-
ond word which ranges over all the possible 2! values. Using these structures,
the same distinguishing results can be reached using only 233a encryptions.

4 Attack on Skipjack Reduced to 25-26 Rounds

In this section we describe the simplest cryptanalysis of Skipjack variants, with
only one or two additional rounds (on top of the 24-round impossible differential
itself). An attack on a 25-round variant of Skipjack from round 5 to round 29 is
as follows. Choose structures of 2'6 plaintexts which differ only at their second
word, having all the possible values in it. Such structures propose about 23! pairs
of plaintexts. Given 222 such structures (23® plaintexts), collect all those pairs
which differ only at the first two words of the ciphertexts; by the structure of
Skipjack, only these pairs may result from pairs with a difference (b, 0, 0, 0) after
round 28. On average only half of the structures propose such pairs, and thus only
about 22! pairs remain. Denote the ciphertexts of such a pair by (C1, Ca, C3, Cy)
and (Cf, C3,Cs, Cy). The pair may have a difference of the form (b, 0, 0, 0) before
the last round only if the decrypted values of C; and C} by the G permutation in
the last round have difference C5 = C2 ® C5. As we know that such a difference
is impossible, every key that proposes such a difference is a wrong key. For each
pair we try all the 232 possible values of the subkey of the last round, and verify
whether the decrypted values by the last G permutation have the difference
C! (this process can be done efficiently in about 216 steps). It is expected that
about 2'6 values propose this difference, and thus we are guaranteed that these
216 values are not the correct subkey of the last round. After analyzing the 22!
pairs, there remain only about 232 (1—2716)2*" = 232.¢-32 &~ 2-14 wrong values
of the subkey of the last round. It is thus expected that only one value remains,
and this value must be the correct subkey. The time complexity of recovering this
last 32-bit subkey is about 217 - 22! = 238 G permutation computations. Since
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each encryption consists of about 2° applications of G, this time complexity
is equivalent to about 233 encryptions. A straightforward implementation of
the attack requires an array of 232 bits to keep the information of the already
identified wrong keys. A more efficient implementation requires only about 232
G computations on average, which is about 227 encryptions, and using 2'¢ bits
of memory.

Essentially the same attack works against a 26-round variant from round 4
to round 29. In this variant, the same subkey is used in the first and last rounds.
The attack is as follows: Choose 2° structures of 232 plaintexts which differ only
in the first two words and get all the 232 values of these two words. Find the
pairs which differ only in the first two words of the ciphertexts. It is expected
that about 26.263 /232 = 237 pairs remain. Each of these pairs propose one wrong
subkey value on average, and thus with a high probability after analysis of all
the pairs only the correct first/last subkey remains. The time complexity of this
attack when done efficiently is 248, using an array of 2'¢ bits. The rest of the key
bits can be found by exhaustive search of 2%® keys, or by more efficient auxiliary
techniques.

5 Cryptanalysis of Skipjack Reduced to 31 Rounds

For the cryptanalysis of Skipjack reduced to 31 rounds, we use again the 24-
round impossible differential. We first analyze the variant consisting of the first
31 rounds of Skipjack, and then the variant consisting of the last 31 rounds of
Skipjack.

Before we describe the full details of the attack, we wish to emphasize several
delicate points. We observe that the full 80-bit key is used in the first four
rounds (before the differential), and is also used in the last three rounds (after
the differential). Therefore, the key-elimination process should discard 80-bit
candidate keys. Assuming that the verification of each of the 289 keys costs at
least one G computation, and as one G computation is about 31 times faster
than one encryption, we end up with an attack whose time complexity is at least
280/31 ~ 27 encryptions. This lower bound is only marginally smaller than
exhaustive search, and therefore the attack cannot spend more than a few G
operations verifying each key, and cannot try each key more than a few times.

We next observe that if the impossible differential holds in some pair, then the
third word of the plaintexts and the third and fourth words of the ciphertexts
have zero differences, and the other words have non-zero differences. Given a
pair with such differences, and assuming that the differential holds, we get three
16-bit restrictions in rounds 1, 4, and 29. Therefore, we expect that a fraction
of 2748 of the keys, i.e., about 232 keys, encrypt the plaintext pair to the input
difference of the differential after round 4, and decrypt the ciphertext pair to the
output difference of the differential before round 29. Once verified, these keys
are discarded. These 232 keys must be discarded with complexity no higher than
232 as we mentioned earlier. Thus, we cannot try all the 289 keys for each pair,
but rather, we devise an efficient algorithm to compute the 232 keys.
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The general structure of the attack is thus expected to be as follows: we
generate a large structure of chosen plaintexts and select the pairs satisfying the
required differences. We analyze these pairs, and each of them discards about
232 keys. After the analysis of 2*® pairs, about 280 (not necessarily distinct)
keys are discarded. We expect that due to collisions, about 1/e of the keys
remain undiscarded. The analysis of additional pairs decreases the number of
undiscarded keys, until after about 2% In 289 ~ 248 .26 pairs only the correct key
remains. However, the complexity of such an attack is higher than the complexity
of exhaustive search.

Therefore, we analyze only 249 pairs, leaving about 28°/e? ~ 277 keys undis-
carded, and then try the remaining keys exhaustively. We emphasize that the
analysis discards keys which cause partial encryption and decryption of a valid
pair to match the form of the impossible differential. We thus assume in the
attack that the differences proposed by the impossible differential do hold, and
discard all keys which confirm this false assumption.

We are now ready to describe the attack. We choose 24! plaintexts whose
third words are equal. Given the ciphertexts, we sort (or hash) them by their
third and fourth words, and select pairs which collide at these words. It is ex-

249

(2*)%/2 _ 549 __:
pected that about “=555"= = 2% pairs are selected.

Each selected pair is subjected to the following analysis, consisting of four
phases. In the first phase we analyze the first round. We know the two inputs of
the G permutation, and its output difference. This G permutation is keyed by
32 bits, and there are about 2'6 of the possible subkeys that cause the expected
difference. This can be done in 26 steps, by guessing the first two bytes of
the subkeys, and computing the other two bytes by differential cryptanalytic
techniques. As the subkeys of the first and last rounds are the same, we can peel
off the last round for each of the possible subkeys.

We then analyze round 4. We know the input and output differences of the
G permutation in round 4. Due to the complementation properties [4 of the
G permutation, we can assume that the inputs are fixed to some arbitrary pair
of values, and find about 2!¢ candidate subkeys corresponding to these values.
The complexity of this analysis is 2. We can then complete all the possible
combinations of inputs and subkeys using the complementation properties. The
analysis of round 29 is similar. We now observe that the same subkey is used
in round 4 and in round 29. The possible subkeys of rounds 4 and 29 are kept
efficiently by using the complementation property, and thus we cannot directly
search for two equal subkey values. Instead, we observe that the XOR value
of the first two subkey bytes with the other two subkey bytes is independent of
complementation, and we use this XOR value as the common value which is used
to join the two lists of subkeys of both rounds. By a proper complementation we
get a list of about 26 tuples of the subkey, the input of round 4 and the output
of round 29. The complexity of this analysis is about 2'6 steps. This list can still

! The G permutation of Skipjack has 2'® — 1 complementation properties: Let O =
Gk (1), and let d = (do, d1) be any 16-bit value. Then O®d = G kg (ay,dg,dy,do) (L D).
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be subjected to the complementation property to get all the (about 23?) possible
combinations.

The third phase joins the two lists, into a list of about 232 entries of the form
(cvg, ... ,cus, X3, X30) where cvy, ... ,cvs are the six key bytes used in rounds 1,
4, and 29, X3 is the feedback of the XOR operation in round 3 (i.e., the output
of the third G permutation), X3¢ is the feedback in round 30 (i.e., the input
of the 30'th G permutation, which is the same in both members of the pair if
cvp, - .., cuy are correct). For each of these values we can now encrypt the first
half of round 2 (using cvs and cvs) and decrypt the second half of round 3 (using
X3, cvg, and cvp). We can view the second half of round 2 and the first half of
round 3 as one permutation, which we call G’, which has an additional feedback
(the third plaintext word) in its middle. We are left now with only two equalities
involving cuvg, ... ,cvg which should hold, as we know the input and output of
round 30, and we know the two outputs of G’. There is only one solution of
Cvg, . . . ,CVg on average, and given the solution we find a key which encrypts the
plaintexts to the input difference of the impossible differential after round 4, and
decrypts the ciphertexts to the impossible difference before round 29. Therefore,
we find a key which is certainly wrong, and thus should be discarded.

In total we find about 23? such keys during the analysis of each pair. By
analyzing 2%° pairs selected from the 24! chosen plaintexts, we find a total of
249. 232 = 281 keys, but some of them are found more than once. It is expected
that a fraction of (1—2780)2"" = 1/e2 ~ 1/8 of the keys are not discarded. These
keys are then tested by trial encryptions in the fourth phase.

To complete the description of the attack we should describe two delicate im-
plementation details: The first detail describes how to find the subkey cvg, . . . , cvg
using one table lookup. The inputs and outputs of G and G’ consist of 80 bits,
and for each choice of the 80-bit query there is on average only one solution
for the subkey. Therefore, we could keep a table of 289 entries, each storing the
solution(s) for a specific query. But the size of this table and the time of its pre-
computation are larger than the complexities we can afford. Instead, we observe
that the complementation property of the G permutation [4] enables us to fix
one of the input words (say to zero) by XORing the other input, the two outputs,
and the proposed subkeys (excluding the intermediate feedback of G’) by the
original value of this input. We can, therefore, reduce the size of the table to 264,
and the precomputation time to 264 as well. Each entry of the table contains on
average one 32-bit subkey. The size of the table can be halved by keeping only
the first 16 bits of the subkey, observing that the second half can then be easily
computed given the first half.

The second delicate implementation detail is related to the way we keep
the list of discarded keys. The simplest way is to keep the list in a table of
280 binary entries whose values are initialized to 0, and are set to 1 when the
corresponding keys are discarded. But again, this table is too large (although its
initialization and update times are still considerably faster than the rest of the
attack). Instead, we observe that we can perform the attack iteratively (while
caching the results of phase 2), where in each iteration we analyze only the keys
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Rounds Chosen Steps

Plaintexts
25 (5-29) 2% 277
26 (4-29) 2% 249
28 (1-28) 2% 277
29 (1-29) 2% 277
30 (1-30) 2% 277
31 (1-31) 2% 278
31 (2-32) 2% 278

Table 1. Complexities of Chosen Plaintext Attacks Against Reduced-Round
Skipjack

whose first two bytes cvp and cv; are fixed to the index of the iteration. This
modification can be performed easily as the attack guesses these two bytes in its
first phase, and each guess leads to independent computations. We thus perform
exactly the same attack with a different order of instructions. As the first 16 bits
of the keys are now fixed in each iteration, the number of required entries in the
table is reduced to 264.

The complexities of phases 1 and 2 are about 2'° for each pair, and 249216 =
265 in total for all the pairs. The complexity of phase 3 is as follows: For each pair,
and for each value in the joined list, we compute two halves of a G permutation
and solve for cuvg, . .. , cvg given the inputs and outputs of the third G and of G’.
Assuming that this solution costs about one computation of a G permutation,
the total complexity of phase 3 is 249 . 232(2. % + 1) = 282 computations of a G
permutation, which is equivalent to 282/31 ~ 277 encryptions. The complexity
of phase 4 is about 2%9/8 = 277 encryption. Therefore, the total complexity of
the attack is about 27® encryptions, which is four times faster than exhaustive
search. The average time complexity of the attack is about 277, which is also
four times faster than the average case of exhaustive search.

An attack on the reduced variant consisting of rounds 2 to 32 requires fewer
chosen plaintexts, and the same complexity. Given four structures of 232 chosen
plaintexts with words 3 and 4 fixed, we can select the 4‘(2;# = 249 required
pairs, and apply the same attack to these pairs (exchanging rounds 1 and 32,
rounds 2 and 31, etc.). This attack can also be applied as a chosen ciphertext
attack against the variant consisting of rounds 1 to 31 using 234 chosen ciphertext
blocks.

)

6 Discussion and Conclusions

The best complexities of our attack when applied to reduced-round variants of
Skipjack are summarized in Table [Tl

This attack cannot be directly used against the full 32 rounds of Skipjack
because each pair may discard only about 26 keys. However, the analysis of
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phases 1 and 2 (which in the case of the full Skipjack also includes the analysis
of the last round) cannot be reduced below 232 G computations. Therefore, the
complexity of the attack is lower bounded by 2'¢/32 = 2!! times the number
of discarded keys (instead of being a few times smaller than the number of
discarded keys), and thus the time required to eliminate all but the correct key
is longer than exhaustive search.

Note that the above attacks against Skipjack are independent of the choice
of the G permutation or the F table. Also note that if in addition to the 5-
round cycle of the key schedule, Skipjack had 5-round groups of rules (instead
of 8-round groups of rules), i.e., had consecutive groups of five rounds of Rule
A followed by five rounds of Rule B, followed by five Rule A and five Rule B
rounds, etc, then it would have a 27-round impossible differential.

We are aware of several impossible differentials of various blockciphers, such
as a 9-round impossible differential of Feal [T6]T3], 7-round impossible differential
of DES [14], 20-round impossible differential of CAST-256 [1], 18-round impos-
sible differential of Khufu [12], and 2.5-round impossible differential of IDEA
[10]. In a related paper [5] we use these impossible differentials to cryptanalyze
IDEA with up to 4.5 rounds, and to cryptanalyze Khufu with up to 20 rounds.
Both attacks analyze more rounds than any other published attack against these
ciphers.

There are many modifications and extensions of the ideas presented in this
paper. For example, cryptanalysis with impossible differentials can be used with
low-probability (rather than zero-probability) differentials, can be used with con-
ditional characteristics [2] (or differentials), and can be combined with linear [11]
(rather than differential) cryptanalysis.

Designers of new blockciphers try to show that their schemes are resistant
to differential cryptanalysis by providing an upper bound on the probability of
characteristics and differentials in their schemes. One of the interesting conse-
quences of the new attack is that even a rigorously proven upper bound of this
type is insufficient, and that designers also have to consider lower bounds in
order to prove resistance against attacks based on impossible or low-probability
differential properties.

A Shrinking: An Automated Technique for Finding
Global Impossible Differentials

In Section Bl we used the miss in the middle approach to find the 24-round
impossible differential of Skipjack. In this appendix we describe an automated
approach for finding all the impossible differentials which are based on the global
structure of the cipher. The simplest way to automate the search is to encrypt
many pairs of plaintexts under various keys, and to conclude that every differ-
ential proposed by the encrypted plaintexts (i.e., any differential formed by a
plaintext difference and the corresponding ciphertext difference) is not an impos-
sible differential. Therefore, by elimination, only differentials that never occur
in our trials may be impossible.
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The main problem is that the space of differentials is too large. The prob-
lem can be greatly simplified when considering wordwise truncated differentials
whose differences distinguish only between zero and arbitrary non-zero differ-
ences in the various words (e.g., Skipjack divides the blocks into four words,
and thus there are only 16 possible truncated plaintext differences, and 16 pos-
sible truncated ciphertext differences, yielding 256 truncated differentials). By
selecting various plaintext pairs and computing the ciphertext differences, we
can easily discard most differentials which are not impossible. However, when
long blocks are divided into many small words, we may never encounter an input
pair whose outputs are almost identical, except for a single word.

To overcome this problem we analyze scaled down variants of the cipher,
which preserve its global structure but change its local details (including the
size of words and the definition of the various functions and permutations). In
many cases, including the impossible differential used against Skipjack in this
paper, the particular implementation of the G permutation, the F table, and
the key schedule do not affect the impossible differentials. In such cases, we can
replace the local operations in the cipher by other operations, maintaining the
global structure. Moreover, we can also reduce the word size to a smaller word
size, together with reducing the size of the local operations without affecting the
impossible differentials. We therefore replace the word size by a few bits (typi-
cally three, since any invertible function with fewer bits is affine), and replace the
large functions by appropriate smaller functionsH Impossible differentials result-
ing from the global structure of the cipher remain impossible even in the scaled
down variant. As the block size of the new variant is small (e.g., 12 bits in the
case of Skipjack), we can easily encrypt all the 22 plaintexts and calculate all
their differences (by exhaustive computation of all the 223 pairs of plaintexts and
ciphertexts). By repeating this process for several random independent choices
of the local functions, and taking the intersection of the resulting impossible dif-
ferentials, we can get with high probability all the impossible differentials which
are a consequence of the global structure of the cipherE We call this technique
shrinking.

Using this approach we searched for the wordwise truncated impossible dif-
ferentials of Skipjack with various numbers of rounds. We found a large number
of impossible differentials with fewer than 24 rounds (some of them with more
than one non-zero word difference in the plaintext or the ciphertext), and con-
firmed that the longest impossible differential based on the global structure of
Skipjack has 24 rounds. The most notable shorter impossible differentials of
Skipjack are (1) the two 23-round impossible differentials (rounds 5-27) which
are (0,a,0,0) 4 (b,0,0,0) and (0,a,0,0) 4 (0,b,0,0) (where a and b are non-
zero), and (2) the two 22-round impossible differentials (rounds 5-26) which are

2 The new functions should preserve the main character of the original functions.
For example, large permutations should be replaced by smaller permutations, linear
functions by smaller linear functions, etc.

3 This technique can also find wordwise truncated differentials with probability 1 which
are based on the global structure of the cipher.
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(0,a,0,0) 4 (0,b,0,0), and the more useful (0,a,0,0) 4 (x,0,y,0), where z
and y can have any value.
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