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Abstract. We examine the concurrent composition of zero-knowledge
proofs. By concurrent composition, we indicate a single prover that is
involved in multiple, simultaneous zero-knowledge proofs with one or
multiple verifiers. Under this type of composition it is believed that stan-
dard zero-knowledge protocols are no longer zero-knowledge. We show
that, modulo certain complexity assumptions, any statement in NP has
k¢-round proofs and arguments in which one can efficiently simulate any
k°M concurrent executions of the protocol.
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1 Introduction

Zero-knowledge proofs [II] and arguments [I] are interactive protocols between
a prover (or arguer), P, and a verifier, V', which informally yield no knowledge
except for the validity of the assertion. The original formal definition of zero-
knowledge considered a very minimal context, and almost immediately, unex-
pected problems emerged when attempting to apply the notion of zero-knowledge
to more practical contexts; the notion of zero-knowledge has been refined accord-
ingly. For example, to make zero-knowledge closed under sequential composition,
a number of researchers ([I820l12]) have proposed a modified definition, known
as auziliary zero-knowledge. A still cleaner model, motivated by these issue, is
that of black-box simulation zero-knowledge [18]; all of the results we will discuss
are for this model.

In practice, it is often desirable to run a zero-knowledge proof many times
in parallel, so as to lower the error probability without increasing the round
complexity. Unfortunately, it is not clear how to efficiently simulate an arbi-
trary zero-knowledge proof in parallel in polynomial time. Indeed, Goldreich and
Krawczyk [10] have shown that for any language L outside of BPP, there is no
3-message protocol for L whose parallel execution can be simulated in black-box
zero-knowledge. In their model, the verifier has oracle access to a truly random
function; given the existence of cryptographically secure pseudorandom gener-
ators, the oracle can be reduced to simply a private string. However, based on
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reasonable computational assumptions, there exist constant-message (indeed, 4
messages suffice) interactive proofs and arguments whose parallel versions re-
main black-box simulatable.

1.1 Concurrent Repetition

Parallel repetition combines many versions of the same protocol in lock step.
When V is supposed to send its ¢th message, it must send the ith message for all
of the parallel runs of the interactive proof. It cannot, for example, delay sending
the first message from Game 2 until it has seen the first response in Game 5.

However, in practice, one may wish to engage in many proofs simultaneously
and concurrently. For example, one may conceivably give a zero-knowledge proof
to establish ones identity whenever one accesses an internet-based service. Differ-
ent processes may access a number of different services, with no synchronization.
This scenario allows for an attack in which a verifier engages in many proofs
with the prover, and arbitrarily interleaves the messages in these protocols. In-
tuitively, the verifier can run some of the protocols ahead in an attempt to gain
information that will enable it to attack some of the other protocols.

Beth and Desmedt [3] first discussed such concurrent attacks in the context
of identification protocols, and show how to defend against such attacks if parties
have precisely synchronized clocks and the adversary is forced to delay its actions.

Dwork, Naor and Sahai [6] consider the role of concurrent attacks on zero-
knowledge protocols. They give 4-round zero-knowledge protocols for NP, as-
suming a weak constraints on the synchrony of weak players: there exist a pair
(a, B), where ae < 3, such that when a good player has observed the passage of
units of time, then every other good player has observed the passage of at least
a units of time. Dwork and Sahai [7] reduce (but do not eliminate) the timing
constraints required by their defense.

A natural question is defend against arbitrary scheduling without any use
of timing. A negative result by Kilian, Petrank and Rackoff [I5] extends the
Goldreich-Krawczyk result to concurrent attacks, for essentially the same model.
They show that for any 4-message proof system for a language L, if one can
black-box simulate polynomially many asynchronous proofs, then L € BPP.

1.2 Our Model

Following [6], we consider a malicious verifier V' that is allowed to run up to k
interactive proofs with the prover P, where k is a free parameter. For our results,
k may be replaced with 2. Within each proof, V must follow the proper order
of the steps, but may arbitrarily interleave steps between different proofs. For
example, V' may execute the first step of Proof 1, then execute all of Proof 2 in
order to obtain an advantage when it executes the second step of Proof 1.

For a given, presumably malicious verifier, V', the simulator is given access
to V, but not to the details of its internal state. It is allowed to run V, receiving
“requests” for different proofs, and send V' responses for these proofs. We assume
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without loss of generality that V' waits for the response before continuing (it
never hurts to receive as much information as possible from the prover before
sending one’s next message). V' is allowed to schedule k proofs arbitrarily, subject
to the constraint that within each proof the steps are properly ordered.

Following the standard notion of black-box simulatability, the simulator S is
allowed to save V'’s state and rewind V' back to a previously saved state. For ease
of explication, we do not explicitly state when S is saving V'’s state, but speak
only in terms of rewinding (S may save Vs state after every message). Without
loss of generality, we assume that V’s state includes all of the messages sent
to it, though when restored to a previously saved state, no messages are sent
since the state was saved are remembered (i.e., we use the reasonable notion
of V’s “memory”). Given V’s initial state, S’s interaction with V' induces a
distribution on V’s final state. S’s goal is for this distribution to be statistically
or computationally indistinguishable from the distribution on V’s final state
after interacting with P.

Note that in our modeling of the adversary, we are considering ordering at-
tacks, but not timing attacks [I6] in which one uses the actual response time from
the prover to obtain information. There are implementation-specific defenses to
such attacks [16]; these methods and concerns are orthogonal to our own.

Similarly, we assume that while the verifier can delay a given message M so
that other messages are received before M, it cannot delay M so as to make it
unclear whether M is actually going to arrive. That is, the prover and simulator
can at some point know that no further messages are arriving. Without this
stipulation, even a single execution of most protocols seem impossible to simu-
late: a malicious verifier V' might with probability n=2¢ wait for n® time-steps
before giving its next answer, where C' is either oo or a large constant unknown
to S. This attack forces S to either keep on waiting or risk giving a slightly (but
non-negligibly) distorted simulation.

1.3 Results of This Paper

For ease of exposition, we assume the existence of a certain publicly agreed upon
bit commitment schemes, both from the prover to the verifier and from the ver-
ifier to the prover. We use an unconditionally binding, computationally private
bit commitment scheme from the prover to the verifier. We use a computation-
ally binding, unconditionally private bit commitment scheme from the verifier
to the prover. The former can be based on one way functions [14/17], and the
latter can be based on collision-resistant hash functions [4].

Our main result is a transformation on zero-knowledge protocols for state-
ments in NP. Our transformed protocol for a statement T (or a proof of knowl-
edge) has two parts: an O(m)-message preamble, for some parameter m and a
main body. The main body consists of a zero-knowledge proof of knowledge for
a witness to a statement 7”7, which is a modified version of T'. A witness for T is
also a witness for 7”. The longer the preamble, the more resistant the resulting
argument is to concurrent attacks.
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Theorem 1. Assume the existence of the commitment schemes described above,
and a proof system or argument for T € NP as described above. Let € be an
arbitrary positive constant and let m = k€. The transformed protocol remains a
proof of knowledge for T. Furthermore, there exists a polynomial-time black-box
simulation for any concurrent attack using at most k) wersions of the proof.
This simulation achieves computational indistinguishability.

As we mention in Section ] there is no need for a public bit-commitment
scheme; this convention simply drops some easily handled cases from our simu-
lation and proof.

Quite recently, Rafail Ostrovsky and Giovanni Di Crescenzo have proposed a
different solution for defeating concurrent attacks without out timing [19]. Their
solution requires a round complexity that is greater than m, an a priori upper
bound on the number of attacker; hence, m must be known and bounded in
advance. In our solution, m = k€ is possible, and more to the point m need not
really be known in advance, though the larger m is, the longer the simulation
takes. However, the result in [19] uses no additional complexity assumptions,
and is thus an incomparable result.

1.4 Techniques Used

We use a technique of Feige, Lapidot and Shamir [§] in order to convert wit-
ness indistinguishable protocols into zero-knowledge protocols. Instead of prov-
ing Theorem T', the prover proves a technically weaker theorem, T'V W, where
W is a statement that will fail to hold (or for which the prover will fail to have
a witness of) with extremely high probability. However, in the simulation, S
obtains a witness for W, and may then act as an ordinary prover. Similarly, we
set up our proof system so that the simulator will have a “cheating” witness to
the statement being proven.

Discussion Indeed, at first glance it may appear that the method from [§]
can be used unchanged. Recall that in the scenario of []], the world begins
with an agreement on a pseudorandom generator g : {0,1}* — {0,1}?* and the
generation of a random string R € {0,1}2* (for ¢ suitably large). Then, any
proof of T is replaced with a proof that T is true or g~ !(R) exists. To simulate
the world from its creation, the simulator S generates g and R = ¢(Q) for a
random @ € {0,1}*. Then S has a witness, (Q), for any statement of the form
“T or g7}(R) exists.” By an appeal to the witness indistinguishability of the
underlying zero-knowledge proof, S is indistinguishable from any other prover
for this statement, despite the fact that its witness is quite different than that
used by an actual prover.

Space precluded a detailed discussion, but we note that our construction gives
a simulatability result that is more “standard” in the zero-knowledge framework.
Also, we do not need a common string, guaranteed to be random.Although we,
for ease of exposition, assume that a suitable bit commitment scheme has been
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standardized, we can relax this assumption with only a trivial change to the
protocol and no substantive change to the simulator and its proof. On a high
level, our methods don’t try to “break” or alter the commitment scheme in any
way, and thus this scheme can be decided on at the beginning of the protocol.

1.5 Guide to the Rest of the Paper

In Section Plwe describe our transformation and how to simulate it. In Section Bl
we analyze the efficiency and efficacy of our simulator. In M we discuss some
simple extensions of our technique, and some open questions.

2 Transforming the Protocol

2.1 The Protocol

Let T be the statement that P is attempting to prove. We insert an O(m) mes-
sage preamble to the proof. Instead of simply giving a proof of T'; P and V will
each randomly choose and commit to m numbers, p1, ps,...pm and v, va, ..Uy,
respectively. P will then prove that either T is true or that for some i p; = v;.

V — P : Commit to v1, v2,... Uy,
P — V : Commit to py

V — P : Reveal v;
P — V : Commit to po

V — P : Reveal v;
P — V : Commit to p;11

V — P : Reveal v,
P — V : Zero-Knowledge Proof that (3¢ s.t. v; = p;) V (T is true)

The protocol begins with m + 1 message exchanges. First V' sends P a commit-
ment to uniformly chosen vy,... v, € {0,1}7, for some suitably large ¢q. For
simplicity, we assume that this commitment is information-theoretically secure.
P responds by sending a commitment to p;. In exchange i + 1, for 1 < ¢ < m,
V reveals v; and P commits to p;y1. Finally, V reveals v,,. At the conclusion
of these exchanges, P responds by giving a zero-knowledge proof that either T
is true or that for some i p; = v;. In the argument model, P gives a statistical
zero-knowledge proof that it knows either:

— a witness for T’ or
— a witness for a pair (i, REVEAL) such that on seeing REVEAL in the revelation
of p;, V would accept that p; = v;.
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Note that P doesn’t reveal which witness it knows, just that it knows one or the
other. The general protocols of [13] and [I] may be used for this step (conceivably,
more efficient protocols may be designed for useful special cases). The details of
this interactive proof (argument) are unimportant.

There are two ways in which P may cause V' to accept. Either it proves that
T is true or it takes the “easy option” by showing that some p; = v;. However,
regardless of a (possibly malicious) prover Ps strategy, the easy option will
be available with probability at most m27~9; by setting ¢ sufficiently large, this
option occurs with negligible probability. Hence, the protocol remains a proof
(of knowledge) of T.

2.2 Why We Can Simulate the Proof

Since there is so little chance of guessing v;, P’s strategy is to choose p; at
random, or 09, and simply proceed with the proof of T'. Thus, for the correct
prover, the preamble is irrelevant and for a malicious prover, the preamble is not
useful. However, the simulator, S, can use the preamble to its advantage. After
seeing v;, it can rewind the conversation to the point where it is required to send
pi, and choose p; = v;. Because V' committed to these v; in the first message, S
need not worry that the v; change after the rewind as long as it doesn’t rewind
past the first message of the proof (which it might do while simulating a different
proof).

Once S has ensured that for some i p; = v;, we say it has solved the pro-
tocol. It can complete the rest of the simulation (of this proof) without any
further rewinding. When the actual proof begins, S has an actual witness to the
statement being proved, and can therefore proceed according to the algorithm
used by the actual prover. Appealing to the witness indistinguishability of the
zero-knowledge proof, it is impossible to distinguish whether S used this witness
or a witness for 7.

2.3 Caveates

We mention three (of many) caveats regarding this approach. First, rewinding
a single step in one proof can render irrelevant the simulations of many other
proofs; nesting effects can cause exponential blowups in the simulation (as dis-
cussed in [6]). However, since S has m places it can rewind in order to fix a
proof’s simulation, it can choose good times to rewind.

Second, an improper use of rewinding can alter the distribution on the ver-
ifiers” questions, rendering the simulation invalid. Our simulation runs in two
modes: normal and look-ahead. The normal mode is a step by step simulation
of the k concurrent proofs. A step made in a normal proof is never rewound,
facilitating the analysis of the distribution of the verifiers’ messages. The look-
ahead mode is invoked when the simulator, running in normal mode, is required
to commit to p; to the verifier, for one of the simulated proofs. In look-ahead
mode, the simulator will explore many possible simulation paths and return
with either the value of v;, allowing S to solve this proof, or a statement that
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this is an unsuitable time to solve the proof. Once the look-ahead is complete,
the simulator continues the normal-mode simulation. We show that S can use
the information obtained in its look-ahead mode yet still maintain a faithful
simulation.

We must also take care to avoid malleability attacks [5], where one links
a commitment to the value of another parties commitment. For example, the
prover might try to commit to the verifier’s value, always achieving a match, or
the verifier might try to foil the simulation by somehow opening up values differ-
ent than those committed by the prover. Our assymetric choice of commitment
protocols prevents these attacks.

2.4 Preliminaries

Let v; ; and p; ; denote the values of v; and p; committed to in the simulation of
the jth proof. These values depend greatly on where we are in the simulation.
In particular, they may be defined and then undefined when S rewinds the
simulation.

Within a simulation path, we number the protocols in order of appearance.
Thus, orderings may differ between different paths, but this will not affect our
analysis.

During the preamble of a simulated protocol j, the verifier commits to m
strings, v1,j,... ,Um,j. By a standard argument, the probability that v; ; is suc-
cessfully revealed to be different values at different times after being committed
to is negligible. Thus, we’ll speak of the “value” of v; ;. However, if the simula-
tor rewinds past the point where the verifier committed to vy j,... ,vm j, these
values become undefined.

At some point in the protocol, the simulated verifier will send a string that is
supposed to reveal v; ;. This string will either actually reveal this unique value
or fail to reveal any value. Note that in the actual protocol, P aborts in the
latter case.

During a path in the simulation, we say that a simulated protocol j is solved
if, for some 7, v; ; has been determined and p; ; has not yet been sent. We say
that a simulated protocol j is aborted if the verifier fails to reveal v; ; when
scheduled to do so. Note that rewinding and choosing a new path can change
whether a simulated protocol is solved or is aborted.

If protocol j has been solved, the simulator simulates the prover’s messages as
follows. If the prover is supposed to send p; ; then it sends v; ; if it is known and
an arbitrary string otherwise. During the main body of the proof, the simulator
has a witness to the statement being proved, and acts according to the algorithm
used by an honest prover. In particular, no rewinding is ever needed.

2.5 The Simulator

We let ko be a constant set to the initial value of k, which denotes the number
of concurrent proofs. We show that if the number of message exchanges in the
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preamble is m = ko° for any € > 0 then the above protocol can be simulated
in time k°(/9). This section describes the look-ahead procedure used by the
simulator and how the simulator works in normal mode.

Look-Ahead Mode An n-proof look-ahead is a procedure used by S to gather
information about the messages V is likely to send in the future. In the look-
ahead phase, the simulation is allowed to proceed until certain events occur
that cause it to be (prematurely) ended. The limited duration of the look-ahead
makes it much more efficient than a full simulation, and indeed it is called many
times during the simulation.

The n-proof look-ahead is called when S is required to commit to some p; ;.
The main simulator runs many (100k02, to be precise) look-ahead simulations;
we call these threads. We first describe one of one such thread, then describe
how to use the results from many threads.

In the course of the simulation, the simulator is required to commit to strings
Da,b and to engage in the main body of proofs. Along the way, it receives the
values of strings v, ;. A particular run of the n-proof look-ahead terminates when
either v; ; has been revealed or the n+1%" new proof, which started since the look-
ahead began, is seen. The former case means that the mission is accomplished:
S can set p; ; = v;;. The latter case means that the simulation is proceeding
too far and risks becoming too complicated; it may not be cost effective to keep
waiting for v; ; to be revealed.

We differentiate between the protocols 1,... , z that have already begun and
the protocols z + 1,...,2z + n that begin during the look-ahead simulation.
The look-ahead simulator recursively starts a normal-mode simulator (described
later). The normal-mode simulator requires a parameter specifying the maxi-
mum number of simultaneous proofs; this parameter is set to n. All messages
and requests related to proofs z + 1,...,z 4+ n are forwarded to this recursive
simulation.

The normal-mode simulation has the property that, with all but negligible
probability, by the time p,, , has been committed to, proof a will have been
solved (see lemma [§). The look-ahead mode is less careful about solving proofs
which began before the look-ahead. In this mode, S may commit to p, . for
an unsolved proof, and subsequently be unable to enter the main body of the
proof. However, S will only get stuck if vy, , is revealed. Whenever this happens,
S aborts the look-ahead and rewinds. We note that this rewinding will take
S to before it committed to p, q, so proof a is now solved. Since less than
ko proofs can begin before any given look-ahead, only kg of the look-ahead
simulation paths will be aborted (the effect of these aborted paths is dealt with
in lemma [7)). Because these simulation paths are always rewound they will not
affect the distribution of the normal-mode simulation.

We formally describe the n-proof look-ahead simulation by a case analysis
of how the simulator responds to various messages. Only the first three cases
are related to the purpose of the look-ahead; the rest are simply to keep the



On the Concurrent Composition of Zero-Knowledge Proofs 423

simulation going in a faithful fashion. By convention, the simulation takes as its
first message the message being handled at the time it was called.

V — S: Valid revelation of v; ;.
S — V: Terminate the simulation. (proof j has been solved)

V — S: A commitment to v1,4,... ,Vm,q, fora=2+n+1.
S — V: Terminate the simulation. (look-ahead is finished)

V — S: Invalid revelation of v; ;.
S — V: Terminate the simulation. (no chance of recovering v; ;)

V — S:  Any message related to protocol a, for z < a < z 4+ n.
S — V: Forward the message to the recursive simulation.
(We assume 1 < a < z in the remaining)

V — S:  Any message related to a solved proof a.
S — V: Answer according to the standard fashion for solved proofs.

V — S: Valid revelation of v 4, where a is unsolved and b < m.
S — V: Commit to an arbitrary (random) value of py41,q4-

V — S: Invalid message related to proof a
S — V: Sign-off message from simulated prover for proof a.

V — S: The value of v, q for an unsolved proof a.

S — V: Abort this line of the simulation. (the simulator cannot simulate the
main body of the proof of an unsolved proof) However, note that proof a is now
solved at the point where the look-ahead simulation began, which allows us to
bound how often this bad case occurs.

Combining the Result of the Look-Aheads. Each run of the n-proof look-
ahead simulation either returns a solution to the proof (v; ;) or announces a
failure to do so. To give a faithful simulation, the simulator must flip coins
(e.g., when committing to py . Thus, there is a probability distribution on these
results. In the normal-mode simulation, whenever the look-ahead simulation is
invoked it is in fact invoked 100ky? times. If a solution is found in any of these
invocations, the proof is solved. Otherwise, we will argue that with high (but
not overwhelming) probability, at least n proofs in the actual (normal-mode)
simulation will be started before v; ; is revealed.

Normal Mode Simulation Our simulator, working in normal mode, services
the requests for up to k asynchronous proofs; the parameter k will be changed
during recursive calls. Valid responses from S can take the following form:

— S signs off due to an invalid message.
— S engages in the main body of a proof.
— 8 commits to some p; ;.
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Handling invalid messages is trivial. Once S has solved a proof a, it can easily
engage in the main body of a proof as a prover, since it has a witness for this
proof. We will ensure that with all but negligible probability, S will always have
solved a proof before it enters into the main body.

When S must commit to some p; ;, it runs the n-proof look-ahead procedure
100ko? times, where n = [2k/m], in an attempt to recover v; ;. If it succeeds it
commits to p; j = v; j; otherwise, it commits to an arbitrary value of p; ;.

As before, we describe the behavior of S by its response to various messages.

V — S:  Any message related to a solved proof a.
S — V: Answer according to the standard fashion for solved proofs.

V — S: A commitment to vy ,4,... ,Vmq-
S — V: Invoke the n = [2k/m]-proof look-ahead simulation 100ko® times. If
V1,4 is recovered, set pi 4 = V1,4, €lse set p1 , arbitrarily. Commit to pq 4.

V — S:  valid revelation of vp 4, b < m.

S — V: Invoke the n = 2k/m-proof look-ahead simulation 100ko® times. If
Vp41,q 1S recovered, set ppii1,qa = Vpt1,a, €lse set pyy1,, arbitrarily. Commit to
Pb+1,a-

V — S:  Any invalid message related to proof a
S — V: Sign-off message from simulated prover for proof a.

3 Analysis of the Simulation

Theorem 2. The simulator, S, described in Section [2 is a black box simulator
for the protocol in Section [ that runs in time k9 on k non-synchronized
proofs when m = k¢ for e > 0.

Proof. (Sketch) This theorem will follow from the following lemmata. Lemma Bl
and Lemma B show that it runs in time k°(*/¢). Lemma Bl shows that the simu-
lator produces a valid output as long as it never gets stuck. Lemmal[8 shows that
the chance of getting stuck is negligibly small in m and the security parameter
for the bit commitment schemes. a

3.1 Bounding the Running Time

We assume that a simulator can handle a single message and give a response in
unit time. We note that since we consider the main body of the proof to be a
single message, we consider that proof to be given in unit time. A more precise
(and more cumbersome) statement is that the running time is £(*/¢) times the
amount of time it takes to perform the main body of the proof.

Lemma 3. The running time of the simulator is bounded by the function

2
t(k) = 100mk03t([—k1) + koW,
m
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Proof. (Sketch) First we note that each look-ahead thread begins a recursive
simulation that handles up to [%W further proofs. This takes time bounded by
t([2£7). Each look-ahead is repeated up to 100ko” times and S may attempt
to solve each of the kg games by performing these look-aheads in m different
places. This results in the coefficient of 100mko>. Each look-ahead thread also
handles messages from previous game, whether solved or not. This takes unit
time for each message. The number of messages, games and look-aheads are all
polynomial in kg. So the cost of this in all look-aheads is bounded by the koo(l)
term. O

Lemma 4. The recurrence t(k) = 100mk03t([%])+k00(1) is KO/ whenm =
ko©.

Proof. (Sketch) At each recursive step, k is divided by ko“/2. Thus the total
depth of the recursion is O(1/¢). Both the coefficient of for the recursive term
and the cost at each level of the recursion are bounded by koo(l). Therefore, the

total cost is koC(/). O

3.2 The Simulation Is Valid

Note that (S,V) doesn’t just simulate the conversation, it implicitly simulates
the internal state of V' - that is, the state of the “black-box” V that S is interact-
ing with. We can consider the conversation generated thus far to be part of V'’s
internal state. Thus, the process of S interacting with V' constitutes a sequence
of transformation on V’s state. We can similarly consider the interaction of P
and V to be a sequence of transformations on V’s state.

We say that S becomes stuck if it enters the main body of a proof that
hasn’t been solved. We designate all other moves made by the simulator as safe.
Lemma[@] says that S will produce a valid simulation as long as S only performs
safe moves.

Lemma 5. Any sequence of safe operations performs the identical (up to com-
putational indistinguishability) transformations on V' as the corresponding oper-
ations performed by P.

Proof. (Sketch) Whenever S interacts in a solved proof, it has a witness for
the statement to be proven. Due to the witness indistinguishability of the zero-
knowledge proof in the main body, and the security of the bit commitment
scheme used by the prover, all actions taken by S are computationally indistin-
guishable from those taken by any other prover.

When S commits to p; ;, it may first launch into many recursive subsimula-
tions involving many backtrackings. However, at the end of all these subsimula-
tions, S restores V' to its initial state, chooses a value for p; ; and commits to
pi,;- The value of p; ; depends on the results of these subsimulations; its distri-
bution may be completely different from that generated by P (indeed, whenever
a proof is solved, it’s distribution is quite different). However, the distribution
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of messages sent for the commitment is the same (up to computational indistin-
guishability), regardless of this value.

Finally, by inspection, S responds to any illegal messages the same way as
does P. O

Note that the notion of a corresponding operations makes sense, because nei-
ther S nor P can control which type of operation it must make in response to V.
Here, we are appealing to the computational indistinguishability of the commit-
ment scheme from the prover to the verifier and the witness indistinguishability
of the zero-knowledge protocols.

Now, given a particular configuration of V', S may run many simulations,
due to the look-ahead mode. However, these simulations are ultimately thrown
away. If one ignores all simulation threads arising from further recursive calls to
the look-ahead mode (a currently active look-ahead mode may be continued),
one obtains a unique sequence of transformations on V. This holds regardless
of whether the particular configuration of V' is encountered in normal mode or
look-ahead mode. We call this sequence the main line of the evolution of V.

The main line of V' from its starting configuration constitutes the simulation
of the proofs. The main line from the beginning of a look-ahead thread goes to
the point where S has finished this line or has been forced to discontinue the
simulation (or get stuck).

Lemma 6. Consider the evolution of V'’s configuration along its main line. As-
suming that S never gets stuck, this evolution will be indistinguishable from the
corresponding evolution obtained by interacting with P.

Proof. (Sketch) The evolution of V' consists of it sending messages to S {P}
and then having S {P} perform operations. As long as S doesn’t get stuck,
all of its operations will be safe, and by Lemma [ their effect on V will be
indistinguishable from the effect of the corresponding operations performed by
P.

It remains to be shown that the evolution of V' when it generates its next
message in the simulation is faithful to that in the actual protocol. Note that this
is a nontrivial statement: S could conceivable run V many times and pick a path
in which V sends a message that is amenable to S. However, by inspection of
the simulation algorithms, S never selects which path to follow based on what V'
says. Indeed, it’s selection process is completely rigid: Paths taken in look-ahead
mode are ultimately not pursued; the main line path is pursued, at least locally
(it may be thrown away later if it is part of a larger look-ahead path). Along
any mainline path, S obtains V’s message exactly once, by running V in the
normal matter. Hence, V'’s internal evolution is also identical to that obtained
by interacting with P. a

3.3 Bounding the Probability of Getting Stuck

Lemmal@ implies that the main line from a configuration of V' is indeed simulated
correctly, as far as it goes (since in look-ahead mode, a simulation is typically
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ended prematurely) and as long as S doesn’t get stuck. We now show that S
gets stuck along any main line with negligible probability.

While in look-ahead mode, S never becomes stuck on a proof which began
before the look-ahead, since it simply aborts the thread if it is about to become
stuck. From then on that proof is solved, so the number of times S aborts is
limited. This strategy cannot be employed in normal mode (at least on the top
level of the recursion) since such stopping would constitute a failure to finish the
overall simulation.

Recall that for any proof started in normal mode, the simulator tries m times
to solve some proof a, by going into look-ahead mode in order to determine v;
for each ¢. We characterize the various outcomes of this attempt.

— (complete success) The look-ahead recovers v; 4, solving proof a.

— (win by forfeit) During the main line, the next mesage from V regarding

proof a is ill formed (does not reveal v; , when it should have).

(honorable failure) The look-ahead fails to solve proof a, and during the

main line more than 2k/m new proofs are begun before V reveals v; 4.

— (dishonorable failure) The look-ahead fails to solve proof a, then during the
main line, at most 2k/m new proofs are begun, after which V' then sends a
correct revelation of v; 4.

Clearly, a single complete success or a win by forfeit will cause the game to be
solved. We must show that with high probability, one of the m attempts will
result in a complete success or a win by forfeit.

We next observe that an honorable failure can happen at most m/2 times.
Since the normal-mode only handles k games, m/2 honorable failures result in
more than (2k/m) - (m/2) = k new games, a contradiction. Thus, it remains to
bound the probability of m/2 dishonorable failures.

We will prove that the chance of getting stuck at any level in the recursion
is negligibly small by using induction on k (the number of proofs in a call to the
simulator). The base case, k = 1, is when the simulator is solving a single proof.
The look-aheads will never encounter another proof and as a result can never
become stuck. The following lemma will be needed to complete the inductive
step.

Lemma 7. During any attempt to solve proof a the probability of a dishonorable
failure is at most 1/10 as long as the chance of getting stuck in a look-ahead is
negligibly small.

Proof. (Sketch) S attempts to solve proof a by performing 100ko? look-aheads
after being asked to commit to p; ,. We note that since these look-aheads have a
negligibly small chance of getting stuck, lemma Blimplies that they give a valid
sampling of the possiblie paths of the conversation. In order for a dishonorable
failure to happen V' must not reveal v; , during any of those look-aheads but
then reveal it when S continues on in normal mode. We may assume that the
chance of V revealing v; , is at least p = 1/10.

Now we must show that the chance of S not learning v; , in any of the look-
aheads is smaller than p. We must remember that some of the look-aheads could
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have been aborted if V' revealed vy, ; for some unsolved proof b. But each time
a look-ahead is aborted we solve proof b. So the maximum number of times the
look-ahead is aborted is kg — 1. Thus we need to show that the chance of seeing
Viq at least ko times is greater than p.

It is easy to verify that for any b < a/3, (bfl) < (‘;)/2 Therefore the chance
of seeing v; , at most ko times is at most twice the cost of seeing it exactly kg
times. This cost is less than

100k> 2
< kOO )pko(l *p)lOOkO ko

< 100%0 kg% (1/10)%0(9/10)?%k0”

Which is dominated by the (9/10)?** and therefore (much) less than 1/10.
Note that the above argument glossed over the fact that the safe steps are

only computationally close to “real” steps. By a standard argument, this does

not affect the analysis by more than a negligible amount. O

Lemma 8. The chance of S getting stuck is negligibly small in m and the se-
curity parameter of the bit commitment scheme.

Proof. (Sketch) We use induction on k. In the base case of k = 1 the simulator
will trivially never get stuck because there are no proofs to get stuck on. By
induction we may assume that all look-aheads (which have smaller values of
k) get stuck with negligibly small probability. The total number of look-aheads
must be polynomial because the total running time of S is polynomial (see
Lemma [3] and Lemma [). Therefore the total chance of getting stuck in any
look-ahead is also negligibly small. By lemma [7 the chance of each dishonorable
failure is less than 1/10. We note that for S to get stuck during a proof it
must have had at least m/2 dishonorable failures. The chance of this is less
than (771”}2)(1/10)7"/2 < 2m/2(1/10)™/? < 27™/2_ There are a total of at most k
proofs on which the simulator can get stuck, so the total chance of getting stuck
is negligibly small.

Note that as with the previous argument, the above argument glossed over
the fact that the safe steps are only computationally close to “real” steps. For
this reason, the probability of getting stuck is negligibly small, not exponentially
small. O

4 Extensions and Open Questions

4.1 Extensions

Our proof assumes that k is known. In the case where k is unknown, S may
start by assuming that £ = 1 and double k£ and restart the interaction each
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time it discovers that k is larger than it assumed. It is easy to verify that this
has no effect on the output distribution and that the total running time is still
polynomial.

We do not really need to have globally agreed upon commitment schemes.
The modification is to add two messages to the protocol in which each party
specifies the commitment scheme that should be used to commit to it (first the
verifier, then the prover). The property we desire is that the commitments are
unconditionally guaranteed to be zero-knowledge, regardless of how it is specified
(illegal specifications are treated as invalid messages). Thus, a party can use the
other party’s bit commitment system without any loss of its security. The party
specifying the protocol has no obvious reason to make it easy to break, but this
is not enforced. Such bit commitment schemes are easily constructed based on [4]
and [14]17]. Due to space limitations, details are omitted from this manuscript.

We also note that there is essentially no reason why our construction doesn’t
work even if the k proofs are different.

4.2 Open Questions

It is unknown whether there is a perfect simulation for non-synchronized compo-
sition of zero-knowledge proofs. We note that in the case when V always follows
the protocol and successfully reveals v; we can modify the simulator so that it
never gets stuck. We do this by having the simulator look-ahead from the point
it is forced to commit to p,, until v,, is revealed if the proof has not yet been
solved. If V' is required to reveal v, this is always successful. Then instead of
being stuck, S is just in a bad case which may take longer to simulate, but it
is still possible to do in polynomial time. Assuming the existence of a perfect
commitment scheme, this non-cheating verifier allows us to provide a perfect
simulation.

It would also be useful to show that it is possible to simulate non-synchronized
composition with a constant number of message exchanges in the preamble.
Again, assuming that the verifier always reveals v;, our protocol can be modified
so that it runs in time k°U°8%) with a constant number of messages. This is
interesting because it shows that the techniques used in [I5] to show that any
four message protocol takes time 2°%) to simulate can not be extended to any
constant round proof.

As mentioned in the introduction, we do not address timing issues in the ver-
ifier’s attack. Even modeling what zero-knowledge should mean in this context,
in a way that is both useful and possible, is an interesting open question.

Finally, it is paradoxical that such seemingly meaningless alterations in the
protocol can restore zero-knowledge. Intuitively, it seems implausible that the
protocol has been made more secure in practice. Ideally, one would like to have
a notion of security that is more or less invariant under such transformations.
The notions of witness hiding and witness indistinguishable protocols are good
steps in this direction.
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