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Abstract. We prove the first general and non-trivial lower bound for
the number of times a 1-out-of-n Oblivious Transfer of strings of length `
should be invoked so as to obtain, by an information-theoretically secure
reduction, a 1-out-of-N Oblivious Transfer of strings of length L. Our
bound is tight in many significant cases.

We also prove the first non-trivial lower bound for the number of random
bits needed to implement such a reduction whenever the receiver sends
no messages to the sender. This bound is also tight in many significant
cases.

1 Introduction

The Oblivious Transfer. The Oblivious Transfer (OT) is a fundamental
primitive in secure protocol design, which has been defined in many different
ways and contexts (e.g. [17], [10], [9]) and has found enormously many applica-
tions (e.g. [2], [17], [9], [13], [7], [16], [1], [14], [11]).

The OT is a protocol typically involving two players, the sender and the
receiver, and several parameters. In the most used form, the

(
N
1

)
-OTL

2 , the sender
has N binary secrets of length L, and the receiver gets exactly one of these
strings, the one he chooses, but no information about any other secret (even if
he cheats), while the sender (even if she cheats) gets no information about the
secret learned by the receiver.

Also important is the notion of a weak Oblivious Transfer, a relaxation of
the traditional OT. The only difference in a weak

(
N
1

)
-OTL

2 is that a cheating
receiver is allowed to obtain partial information about several secrets, but at
most L bits of information overall.

Reductions between different OTs. Protocol reductions facilitate protocol
design because they enable one to take advantage of implementing cryptograph-
ically only a few, carefully chosen, primitives. Information-theoretic reductions
are even more attractive, because they guarantee that the security of a complex
construction automatically coincides with that of the chosen primitive, once the
latter is implemented cryptographically.
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But to be really useful, reductions must be efficient. In particular, because
even the best cryptographic implementation of a chosen primitive may be ex-
pensive to run, it is crucial that reductions call such primitives as few times as
possible.

Because of the importance of OT, numerous reductions from “more com-
plex” to “simpler” OT appear in the literature (e.g. [5], [8], [3], [6]). Particular
attention has been devoted to reducing

(
N
1

)
-OTL

2 to
(

n
1

)
-OT`

2, where N ≥ n and
L ≥ `, both in the weak and in the strong case. Typically, these reductions are
information-theoretically secure if the simpler OT is assumed to be so secure.

An important class of OT reductions are the ones in which the receiver sends
no messages to the sender. Such reductions are called natural, both because all
known OT reductions are of this type (e.g. [5], [6], [3]), and because they imme-
diately imply that the sender gets no information about the receiver’s index.

So far, researchers have been focusing on improving the upper bounds of
these reductions, that is, the number of times one calls

(
n
1

)
-OT`

2 in order to
construct

(
N
1

)
-OTL

2 . However, little is known about the corresponding lower
bounds. Indeed,

What is the minimum number of times that the given
(
n
1

)
-OT `

2 must be
invoked so as to obtain the desired

(
N
1

)
-OTL

2 ?

Lower bounds were previously addressed in the context of very specific reduction
techniques, and for very specific OTs. For instance, in [5] simple lower bounds
are derived for reductions of

(
2
1

)
-OTL

2 to
(
2
1

)
-OT1

2 that use zigzag functions.
Another natural resource of a reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 is the
amount of needed randomness. That is, an OT protocol is necessary probabilistic,
but

What is the minimum number of random bits needed in a information-
theoretically secure reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT `

2 ?

To the best of our knowledge, no significant results have ever been obtained
about this crucial aspect.

Our results. In this paper we provide the first general lower bounds for such
information-theoretic OT reductions, and prove that these bounds are tight in
significant cases. Namely, we prove that

– In any information-theoretically secure reduction of (even weak!)
(
N
1

)
-OTL

2

to
(
n
1

)
-OT`

2, the latter protocol must be invoked at least L
` · N−1

n−1 times.
– The lower bound is tight for weak

(
N
1

)
-OTL

2 .
– The lower bound is tight for (“strong”)

(
N
1

)
-OTL

2 when L = `.

We also prove the first general lower bound for the amount of randomness needed
in a natural OT reduction. Namely,

– In any natural reduction of (even weak)
(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2, the sender
must flip at least L(N−n)

n−1 coins.
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– The lower bound is tight for weak
(
N
1

)
-OTL

2 .
– The lower bound is tight for (“strong”)

(
N
1

)
-OTL

2 when L = `.

We note that, in a natural reduction, the amount of randomness used by the
sender necessarily coincides with the total amount of randomness needed by both
parties.

We point out the interesting special case when n = 2 and ` = 1, i.e. reduc-
ing

(
N
1

)
-OTL

2 to
(
2
1

)
-OT2, the simplest possible 1-out-2 Oblivious Transfer. We

obtain that we need at least L(N − 1) invocations of
(
2
1

)
-OT2 and, for a natural

OT reduction, at least L(N − 2) random bits.

Lower bounds via information theory. No general lower bound for OT
reduction would be provable without very precisely and generally defining what
such a reduction is. Fortunately, one such definition was successfully given by
Brassard, Crépeau, and Sántha [5] based on information theory, and in particular
the notion of mutual information. This framework is very useful since it allows
one to define precisely such intuitive (but hard to capture formally) notions as
“learn at most k bits of information” or “learn no information other than ...”.

We point out, however, that information theory is much more useful than
merely defining the problem. Indeed, we shall demonstrate that its powerful
machinery is essential in solving our problem, for example, in proving our L

` ·N−1
n−1

lower bound on the number of invocations. Only the trivial bound of L
` appears

to be provable without information theory. But getting the additional N−1
n−1 factor

in the lower bound (which is essential when L = `) requires explicit or implicit
use of information theory.

We believe and hope that information theory will prove useful for other types
of lower bounds in protocol problems.

2 Preliminaries

2.1 Information Theory Background

Let X, Y, Z by random variables over domains X ,Y,Z. Let us denote by PX(x),
PX|Z(x|z), PX,Y (x, y) the probability distribution of X , conditional probability
distribution of X given Z, and joint distribution of X and Y respectively.

Definition 1.

– The entropy H(X) = −∑
x PX(x) log2 PX(x).

The entropy of a random variable X tells how many truly random bits one
can extract from X, i.e. how much “uncertainty” is in X.

– The conditional entropy H(X |Z) is the average over z of the entropy of the
variable Xz distributed according to PX|Z(x|z) (denoted H(X |Z = z)), i.e.

H(X |Z)=
∑

z

PZ(z)H(X |Z =z) = −
∑

z

PZ(z)
∑

x

PX|Z(x|z) log2 PX|Z(x|z)

H(X |Z) measures how much uncertainty X still has when one knows Z.
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– The joint entropy of X and Y is the entropy of the joint variable (X, Y ),
i.e.

H(X, Y ) = −
∑

x,y

PX,Y (x, y) log2 PX,Y (x, y)

– The mutual information between X and Y is I(X ; Y ) = H(X) − H(X |Y ).
– The mutual information between X and Y given Z is I(X ; Y |Z) = H(X |Z)−

H(X |Y, Z).
The mutual information between X and Y (given Z) tells how much common
information is between X and Y (given Z), i.e. by how much the uncertainty
of X (given Z) decreases after one learns Y .

The following easily verified lemma summarizes some of the properties we
will need.

Lemma 2.

1. H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y ).
2. I(X ; Y ) = I(Y ; X) = H(Y )−H(Y |X) = H(X)−H(X |Y ) = H(X)+H(Y )−

H(X, Y ).
3. I(X, Z; Y ) = I(X ; Y ) + I(Z; Y |X).
4. H(X |Y ) = 0 iff X is a deterministic function of Y .
5. H(X |Y ) ≤ H(X) with equality iff X and Y are independent.

(Thus, I(X ; Y ) ≥ 0 with equality iff X and Y are independent.)
6. I(X ; Y ) ≤ H(X) ≤ log2 |X |.
7. I(X ; Y ) ≤ I(X ; Y |Z) + H(Z).
8. H(Un) = n, where Un is the uniform distribution over n-bit strings.

2.2 Information-Theoretically Secure OT Reductions

Assuming some familiarity with the notions of an interactive Turing machine
(ITM) [12], let us semi-formally define (1) protocols with an ideal

(
n
1

)
-OT`

2 and
then (2) information-theoretically secure reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2.
Despite the difference in presentation, the following definition is a simpli-

fication of that of [5]. (For instance, we simplify it by ignoring the additional
condition of awareness that is not going to affect our lower bound in any way.)

Protocols with ideal

(
n
1

)
-OT

`
2. Let us denote by a n-sender a probabilistic

ITM having n special registers, and by a n-receiver is probabilistic ITM having
a single special register. Let A be a n-sender and B a n-receiver. We say that
(A, B) is a protocol with ideal

(
n
1

)
-OT `

2 if, letting a be a private input for A
and b be a private input for B, the computation of (A, B) proceeds as that of
pair of ITMs, except that it consists of three (rather than the usual two) types
of rounds: sender-rounds, receiver-rounds and OT-rounds, where by convention
the first round always is a sender-round and the last is a receiver-round. In a
sender-round, only A is active, and it sends a message to B (that will become an
input to B at the start of the next receiver-round). In a receiver-round, only B is
active and, except for the last round, it sends a message to A (this message will
become an input to A at the start of the next sender-round). In an OT round,
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(1) A places for each j ∈ [1, n] an `-bit string σj in its jth special register, and
(2) B places an integer i ∈ [1, n] in its special register, and
(3) σi will become a distinguished input to B at the start of the next receiver-

round. A will obtain no information about i.
At the end of any execution of (A, B), B computes a distinguished string called
B’s output.

Messages and Views. Let (A, B) be a protocol with ideal
(
n
1

)
-OT`

2. Then, in
an execution of (A, B), we refer to the messages that A sends in a sender-round
as A’s ordinary messages, and to the strings that A writes in its special registers
in an OT-round as A’s potential OT messages. For each OT-round, only one of
the n potential messages will be received by B, and we shall refer to all such
received messages as B’s actual OT messages. Recalling that both A and B are
probabilistic, in a random execution of (A, B) where the private input of A is a
and the private input of B is b, let us denote by VIEWA[A(a), B(b)] the random
variable consisting of

(1) a, (2) A’s coin tosses, and (3) the ordinary messages received by A;

and let us denote by VIEWB[A(a), B(b)] the random variable consisting of

(1) b, (2) B’s coin tosses, and (3) all messages (both the ordinary and the
actual OT ones) received by B.

Reduction of

(
N
1

)
-OT

L
2 to

(
n
1

)
-OT

`
2. Denote by W the set of all N -long

sequences of L-bit stings and, given w ∈ W , let wi be the ith string of w.
Denote by W the random variable that selects an element of W with uniform
probability; by I the random variable selecting an integer in [1, N ] with uniform
probability; and let A be an n-sender and B be an n-receiver. We say that (A, B)
is an information-theoretically secure reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 if the
following three properties are satisfied:

(P1) (Correctness) ∀w ∈ W and ∀i ∈ [1, N ], and ∀ execution of (A, B) where
A’s private input is w and B’s private input is i,

B’s output is wi;

(P2) (Receiver Privacy) ∀ sender A′ and ∀ string a′,

I(VIEWA′ [A′(a′), B(I)] ; I) = 0; (1)

(P3) (Sender Privacy) ∀ receiver B′ and string b′, ∃ a random variable Ĩ ∈ [1, N ]
independent of W s.t.

I(W ; VIEWB′ [A(W ), B′(b′)] | WĨ) = 0. (2)

In the context of a reduction of
(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2, we shall sometimes say
that we are given

(
n
1

)
-OT`

2 as a black-box.
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The Correctness Property states that when A and B are honest, B will al-
ways obtain the string he wants. The Receiver Privacy Property states that no
malicious sender A′ can learn any information about the index of the honest
receiver B. Finally, the Sender Privacy Property states that a malicious receiver
B′ can learn information about at most one of N strings of the sender A. More-
over, the index Ĩ of this single string cannot depend on W (e.g. we don’t want
B′ to learn the first string in W that starts with 10). In other words, both A
and B do not gain anything by not following the protocol.

Reduction of weak

(
N
1

)
-OT

L
2 to

(
n
1

)
-OT

`
2. We call (A, B) an information-

theoretically secure reduction of weak
(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 if all the properties
of the reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 hold except (Sender Privacy) is relaxed
to the following:
(P3′) (Weak Sender Privacy) ∀ receiver B′ and string b′

I(W ; VIEWB′ [A(W ), B′(b′)]) ≤ L. (3)

This property says that we allow a malicious receiver B′ to obtain partial infor-
mation about possibly several strings, provided he learns no more than L bits of
information overall. To emphasize the difference, we will sometimes refer to the
(regular) reduction between

(
N
1

)
-OTL

2 and
(
n
1

)
-OT`

2 as reducing strong
(
N
1

)
-OTL

2

to
(
n
1

)
-OT`

2. To justify this terminology, we show

Lemma 3. If (A, B) is a reduction of (strong)
(
N
1

)
-OTL

2 to
(
n
1

)
-OT `

2 , then it is
a reduction of weak

(
N
1

)
-OTL

2 to
(
n
1

)
-OT `

2 .

Proof. By Lemma 2 (equations 7 and 6),

I(W ; VIEWB′ [A(W ), B′(b′)]) ≤ I(W ; VIEWB′ [A(W ), B′(b′)] | WĨ) + H(WĨ)
= H(WĨ) ≤ |WĨ | = L

3 Lower Bounds

To simplify our notation, we do not worry about “floors” and “ceilings” in the
rest of the paper, assuming that (N − 1) is divisible by (n − 1) and that L is
divisible by ` (handling the the general case presents no significant difficulties).
We will also refer to the sender as Alice and to the receiver as Bob.

Let α be the number of OT-rounds (invocations of
(
n
1

)
-OT`

2) needed to reduce
(weak)

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2. Since we concentrate on the worst possible number
of OT-rounds, we can assume w.l.o.g. that α is a fixed number and that the
sender and receiver always perform exactly α OT-steps. We start with a sharp
lower bound on α.
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3.1 Lower Bound on the Number of Invocations of
(
n

1

)
-OT`

2

Theorem 4. Any information-theoretically secure reduction of weak1
(
N
1

)
-OTL

2

to
(
n
1

)
-OT `

2 must have

α ≥ L

`
· N − 1

n − 1
(4)

Proof. Let us first give the informal intuition behind the proof. We know by
the (weak) sender privacy condition that Bob can learn at most L (out of total
NL) bits of information about W . However, if in each of the OT rounds Bob
was somehow able to obtain all n strings that Alice put as her local inputs to
this OT round (rather than getting only one of them), Bob should be able to
learn all (NL bits) of W . Indeed, if Bob could not cannot learn some Wi with
certainty, Alice will know that Bob’s index is not i (if it was i, honest Bob should
be able to get Wi with probability 1 by the correctness property). But this would
contradict the receiver privacy condition as Alice learns some information about
Bob’s index. Hence, αn`−n` = α`(n−1) bits that Bob did not get from the OT
rounds, “contain information” about the remaining at least NL−L = L(N − 1)
bits of W that Bob did not learn. The bound follows.

Let us now turn this intuition into a formal proof. Let P , P = (Alice, Bob),
be an information-theoretically secure reduction of

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 that
uses α invocations to

(
n
1

)
-OT`

2. First, we need the following simple lemma.

Local Lemma: ∀ input w = w1, . . . , wN , ∀ random tape RA for Alice, ∀ distinct
i, i′ ∈ [1, N ] and ∀ random tape tape R′

B for Bob, there exists a tape RB for
Bob such that the sequence of messages, M , received by Alice(w, RA) from
Bob(i′, R′

B) coincides with the sequence of messages that Alice(w, RA) receives
from Bob(i, RB).

Proof: Assume that RB does not exist. Then, executing with Bob(i′, R′
B), we

get that Alice(w, RA) will determine for sure that Bob’s index is not i. Thus,
when Bob’s index is i′, with non-zero probability over Bob’s random string,
Alice(w, RA) would obtain information about Bob’s index (that it is not i),
contradicting the receiver privacy condition.

To derive our lower bound for α, we define the following two notions: that of
a special execution of P and that of a pseudo-execution of P .

Special execution. A special execution of P is an execution of P in which
Alice’s input is a sequence of N randomly selected strings of length L, Alice’s
tape consists of randomly and independently selected bits, Bob’s index is 1, and
Bob’s tape is the all-zero string, 0. In other words, we fix the behavior of Bob
by fixing his index and the random string. With respect to a special execution
of P , define the following random variables:

– W — Alice’s N L-bit strings, W = W1, . . . , WN ;
– R — Alice’s random tape;

1 Since we are proving a lower bound, it clearly applies to (strong)
�

N
1

�
-OTL

2 as well.
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– Ms — the ordinary messages sent by sender Alice;
– Mr — the ordinary messages sent by receiver Bob;
– V — Alice’s potential messages (an αn`-bit string, that is, for each of the

α invocations of
(

n
1

)
-OT`

2, the n `-bit strings that are Alice’s local inputs in
the invocation).

– Vr — the actual messages received by Bob in the OT-rounds, (an α`-bit
string, that is, for each of the α invocations of

(
n
1

)
-OT`

2, the `-bit string that
Bob received depending on his local index during that invocation).

Pseudo-execution. Let M̄s be a sequence of messages, let V̄ be a sequence of
α sequences of n strings of length l each, let ī be an index in [1, N ], and let R̄B be
a bit-sequence. A pseudo-execution of P with inputs M̄s, V̄ , ī, and R̄B, denoted
by P̄ (M̄s, V̄ , ī, R̄B), is the process of running Bob with index ī and coin tosses
R̄B, letting the kth message from the sender be the kth string of M̄s, and by
letting the sender’s input to the jth invocation of

(
n
1

)
-OT`

2 to be the jth n-tuple
of l-bit strings in V̄ . In other words, we pretend to be Alice and see what Bob
will do in this situation on some particular index and random string.

Our lower bound for α immediately follows from the following two claims.

Local Claim 1: I((V, Ms) ; W ) = NL.

Proof: By the definition of mutual information, we have

I((V, Ms) ; W ) = H(W ) − H(W | (V, Ms)).

Because W is randomly selected, H(W ) = NL. Therefore, to establish our claim
we must prove that H(W | (V, Ms)) = 0. We do that by showing that W is
computable from V and Ms by means of the following algorithm.

1. Run P̄ (V, Ms, 1,0) and let Mr be the resulting “ordinary messages sent by
Bob”.
(Comment: Bob’s view and Bob’s messages sent in this pseudo-execution are
distributed exactly as in a special execution.)

2. For i = 1 . . .N compute Wi as follows:
– Find a string Ri such that, when executing P̄ (V, Ms, i, Ri), the sequence

of messages sent by Bob equals Mr.
(Comment: The existence of at least one such Ri follows from the Lo-
cal Lemma with i′ = 1, R′

B = 0, w = W and RA = R. Further no-
tice that, because Mr, W and R totally determine Alice’s behavior, the
messages and ”potential” messages that Alice(W, R) sends to Bob(1,0)
and to Bob(i, Ri) are exactly V and Ms in both cases. Hence, any Ri

that produces Mr in the pseudo-execution P̄ (V, Ms, i, Ri), implies that
Alice(W, R) would produce messages Ms and “potential” messages V
when communicating with Bob(i, Ri).)

– Let Wi be Bob’s output in P̄ (V, Ms, i, Ri).
(Comment: By the correctness property of our reduction, Bob(i, Ri)
would correctly output Wi when talking to Alice(W, R). And as we no-
ticed, Alice(W, R) would produce Ms and V when communicating with
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Bob(i, Ri), so running pseudo-execution P̄ (V, Ms, i, Ri) indeed makes
Bob to produce the correct Wi).

Local Claim 2: I((V, Ms) ; W ) ≤ L + α`(n − 1).

Proof: By Lemma 2 (equation 3), we have

I((V, Ms) ; W ) = I((Vr , Ms) ; W ) + I((V \Vr) ; W | (Vr , Ms)).

Now, because P implements weak
(
N
1

)
-OTL

2 , and because (Vr, Ms) consists of
Bob’s view in a (special) execution of P , we have by (P3′) that I((Vr , Ms) ; W ) ≤
L. Also, by Lemma 2 (equations 5 and 6),

I((V \Vr) ; W | (Vr , Ms)) ≤ |V \Vr| = α`(n − 1).

The claim follows.
By combining Local Claims 1 and 2, we have NL ≤ L + α`(n − 1), from

which the desired lower bound for α immediately follows.

3.2 Lower Bound on the Number of Random Bits

Let us now prove the lower bound on the number of random bits needed by the
sender in a natural reduction.

Theorem 5. In any informationally-theoretic natural reduction of weak2
(
N
1

)
-

OTL
2 to

(
n
1

)
-OT `

2 the sender must flip at least L(N−n)
n−1 random coins.

Proof. Let P , P = (Alice, Bob), be an information-theoretically secure natural
reduction from weak

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2. As before, let W be the random
input of Alice, R be her random tape, Ms be her ordinary messages sent to
Bob and V be her “potential” messages. We notice that since the reduction is
natural, the distribution of V and Ms does not depend on Bob’s index and his
random string. Let Vj , j = 1 . . . n, be an α-tuple consisting of string number j
taken from each of the α invocations of

(
n
1

)
-OT`

2. We see that V is the disjoint
union of V1, . . . , Vn.

As before, we proceed by expanding the mutual information between W and
(V, Ms) in two different ways.

I((V, Ms); W ) = H(W ) − H(W | (V, Ms)) = NL − 0 = NL (5)

Here we used the fact that W is determined from V and Ms. Indeed, since V
and Ms do not depend on Bob’s input or random string, Alice should make sure
that honest Bob can retrieve any Wi with probability 1 (if his input is i).

On the other hand, it is a possible behavior for a (malicious) Bob to read
string number j in all the OT-rounds, i.e. to obtain Vj . By the weak sender

2 Again, same result applies to (strong)
�

N
1

�
-OTL

2 as well.
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privacy condition, I((Vj , Ms); W ) ≤ L, and, therefore, for any j ∈ [1, n] we have
(using Lemma 2, equations 5 and 6)

I((V, Ms); W ) = I((Vj , Ms); W ) + I(V \Vj ; W | (Vj , Ms)) ≤ L + H(V \Vj | Vj)

Combining this with Equation (5), we get

H(V \Vj | Vj) ≥ L(N − 1), ∀j ∈ [1, n] (6)

Since V is a disjoint union of Vj ’s, we get from the above equation (for j = n) and
Lemma 2 (equations 1 and 5) that L(N−1) ≤ H(V \Vn | Vn) ≤ ∑n−1

j=1 H(Vj | Vn).

Hence, there is an index j ∈ [1, n−1] s.t. H(Vj) ≥ H(Vj | Vn) ≥ L(N−1)
n−1 . W.l.o.g.

assume j = 1, i.e. H(V1) ≥ L(N−1)
n−1 . Since for a fixed W , the only randomness of

V came from R, we have by Equation (6) and Lemma 2 (equation 1)

|R| ≥ H(V | W ) = H(V, W ) − H(W ) = H(V1) + H(V \V1 | V1) − NL

≥ L(N − 1)
n − 1

+ L(N − 1) − LN =
L(N − n)

n − 1

Here H(V, W ) = H(V ) as W is a function of V , and then we use (6) for j = 1
and our assumption on H(V1). This completes the lower bound proof.

4 Upper Bounds

Though this paper focuses on proving lower bounds, we need to touch briefly
upon upper bounds to demonstrate the tightness of Theorems 4 and 5. This is
done by means of a single natural reduction of weak

(
N
1

)
-OTL

2 to
(
n
1

)
-OT`

2 that
simultaneously achieves both the lower bounds for the number of invocations of(
n
1

)
-OT`

2 and the number of random bits needed by the sender. This protocol is
a simple generalization of the one given by Brassard, Crépeau and Sántha [5]
for the case L = `, n = 2. For completeness purposes, we also include the proof
that this protocol works. Though a similar proof could be derived from [5], the
one included here is more direct because our definition of a reduction is slightly
simpler.3 Note that the same protocol also proves that our lower bounds are
tight for reduction of (strong)

(
N
1

)
-OT`

2 to
(
n
1

)
-OT`

2.

Theorem 6. There exists a natural information-theoretically secure reduction
of weak

(
N
1

)
-OTL

2 to
(
n
1

)
-OT `

2 such that

– it uses L
` · N−1

n−1 invocations of
(
n
1

)
-OT `

2 .

– the sender uses L(N−n)
n−1 random bits.

3 You might notice, we embed the security of
�

n
1

�
-OT`

2 into the definition of our reduc-
tion. Without doing so, one would have to argue about “nested mutual information”.
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Moreover, for L = `, the reduction actually is a reduction of (strong)
(
N
1

)
-OT `

2

to
(
n
1

)
-OT `

2 .

Proof. We start with L = `, i.e. a reduction of (strong)
(
N
1

)
-OT`

2 to
(
n
1

)
-OT`

2,
making α = N−1

n−1 invocations and using `(N−n)
n−1 random bits for Alice. Let w =

w1, . . . , wN be Alice’s N strings of length ` each, and let i be Bob’s index.

Protocol P (w, i):

1. Alice chooses (α − 1) random `-bit strings x1, . . . , xα−1 using `(α − 1) =
`(N−n)

n−1 random bits. Set x0 = 0`, xα = wN .
2. Perform α invocations of the

(
n
1

)
-OT`

2 where transfer j = 0 . . . (α − 1) im-
plements(
n
1

)
-OT`

2 [wj(n−1)+1 ⊕ xj , wj(n−1)+2 ⊕ xj , . . . , w(j+1)(n−1) ⊕ xj , xj+1 ⊕ xj ].
Let zj be the value Bob reads from the jth invocation, described next.

3. Let j0 ∈ {0 . . . (α− 1)} be the index of the box which has the XOR-ed value
of wi (= b i−1

n−1c, if i 6= N , and = (α − 1), otherwise). Bob reads the value
zj0 = wi ⊕ xj0 from box number j0 and values zj = xj+1 ⊕ xj for all j 6= j0.

4. Bob outputs
⊕j0

j=0 zj .

We now prove that the above protocol indeed implements strong
(

N
1

)
-OT`

2.
The Correctness Property (P1) is clear since (wi⊕xj0 )⊕(xj0 ⊕xj0−1)⊕ . . . (x2⊕
x1) ⊕ x1 = wi. The Receiver Privacy (P2) is clear as well since the scheme is
natural and, as we just saw, Bob can recover any wi. We now show the main
condition (P3).

Let W = W1, . . . , WN be chosen at random as well as Alice’s random string
R = X1, . . . , Xα−1. Let V be the random variable containing all (αn) values
of the

(
n
1

)
-OT`

2 boxes. We can assume w.l.o.g. that in each of the α OT boxes,
Bob indeed read one entire `-bit string that he chose (he can not learn more
and it “does not hurt” to learn as much as possible). Thus, define Vr to be the
α-tuple of `-bit strings that Bob read, i.e. everything that Bob learned from the
protocol. Let t0, . . . , tα−1, where tj ∈ [1, n], be the (random variables denoting
the) indices of α strings that Bob read.

Let j0 be the smallest number such that tj0 6= n, if it exists. Otherwise, j0 =
α−1. Thus, Bob learned X1, X1⊕X2, . . . , Xj0−2⊕Xj0−1 and some Wi⊕Xj0−1.
Clearly, this enables him to reconstruct Wi (the exceptional case of all tj = n

falls here as well giving Bob WN ). We let Ĩ = i. First of all, Ĩ is independent from
W . Indeed, Bob choose to read index tj0 in the jth

0 invocation of
(
n
1

)
-OT`

2 only
based on his random coins and X1, X1⊕X2, . . . , Xj0−2⊕Xj0−1, which does not
depend on W . Thus, it suffices to show that I(Vr ; W | WĨ) = 0. But we already
observed that WĨ is determined from Vr. Hence, using Lemma 2 (equations 4
and 3),

I(Vr ; W ) = I((Vr , WĨ) ; W ) = I(WĨ ; W ) + I(Vr ; W | WĨ)
= ` + I(Vr ; W | WĨ)
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Thus, we only need to show that I(Vr; W ) = `, i.e. to establish the weak property
(P3′). Intuitively, Bob always learns some WĨ , i.e. ` bits of information. So if
we show that he does not learn more than ` bits of information, we know that
the only thing he learned was that one string WĨ . We proceed by showing a
sequence of easy claims.

Local Claim 1: W is a function of V , i.e.

H(W | V ) = 0 (7)

Proof: We already saw from correctness that V determines each string Wi.

Local Claim 2:

H(V \Vr | Vr) = `(N − 1) (8)

Proof: We show that all (αn) `-bit strings of V are totally independent when
W and R are randomly chosen. Let us view each such string in V as an (N +
α − 1)-dimensional vector over Z2 by taking the characteristic vector of the
equation defining this string. Since all Wi and Xj are chosen randomly, our
strings are independent iff the corresponding vectors are linearly independent.
Assume that some linear combination of vectors in V is zero. This combination
cannot include a vector depending on some Wi as there is only one such vector
in V . And the remaining vectors X1, X1 ⊕ X2, . . . , Xα−2 ⊕ Xα−1 are clearly
linearly independent. And since our disjoint split of V into Vr and V \Vr does
not depend on V \Vr, we get that V \Vr is independent of Vr, so by Lemma 2
(equation 5), H(V \Vr | Vr) = |V \Vr| = `(n − 1)α = `(N − 1).

Local Claim 3: V \Vr is determined from W and Vr, i.e.

H(V \Vr | (Vr, W )) = 0 (9)

Proof: The knowledge of W and any string Wi ⊕ Xα−1 in the last
(
n
1

)
-OT`

2 box
(which we have from Vr) determines Xα−1. Knowing Xα−1, W and any string
of the form z⊕Xα−2 from the next to last

(
n
1

)
-OT`

2 box (which we have from Vr

where z is either some Wi or Xα−1) enables one to deduce Xα−2. Continuing this
way, we determine X1 from the first

(
n
1

)
-OT`

2 box which allows us to reconstruct
the whole V \Vr.

Combining Local Claims 1,2,3 and using Lemma 2 (equations 1, 2 and 3),

`N = H(W ) = H(W ) − H(W | V ) = I(V ; W ) = I(Vr; W ) + I(V \Vr; W | Vr)
= I(Vr ; W ) + H(V \Vr | Vr) − H(V \Vr | (Vr, W )) = I(Vr ; W ) + `(N − 1)

Hence, I(Vr ; W ) = ` indeed. This completes the proof of correctness when L = `.

For ` < L we give a trivial protocol that sacrifices the strong property (P3)
leaving only (P3′). The protocol simply splits each of the strings of the database
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into L/` disjoint parts of length ` each, and performs the previous protocol
implementing

(
N
1

)
-OT`

2 using
(
n
1

)
-OT`

2. It uses L
` · N−1

n−1 invocations of
(
n
1

)
-OT`

2

and L
` · `(N−n)

n−1 = L(N−n)
n−1 random bits as claimed. The correctness is clear except

Alice’s privacy. We clearly loose the strong property (P3) as Bob can learn up to
L/` different blocks of length ` from different strings. However, weak property
(P3′) still holds as the L/` groups of boxes are totally independent, and from
each of them Bob can learn at most ` bits about W , i.e. a total of at most
` · L

` = L bits.
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4. G. Brassard, C. Crépeau, J. Robert. Information theoretic reductions among
disclosure problems. In 27th Symp. of Found. of Computer Sci., pp. 168-173,
IEEE, 1986.
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