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Abstract: Data classification is an important research topic in the field of data mining 
and knowledge discovery. It finds the common properties among a set of objects in a 
database and classifies them into different classes. There have been many data 
classification methods studied, including decision-tree method, statistical methods, 
neural networks, rough sets, etc. In this paper, we present a new mathematical 
representation of qualitative concepts—Cloud Models. With the new models, 
mapping between quantities and qualities becomes much easier and interchangeable. 
Based on the cloud models, a novel qualitative strategy for data classification in large 
relational databases is proposed. Then, the algorithms for classification are developed, 
such as cloud generation, complexity reduction, identifying interacting attributes, etc. 
Finally, we perform experiments on a challenging medical diagnosis domain, acute 
abdominal pain. The results show the advantages of the model in the process of 
knowledge discovery.  
 
 
Keywords: Cloud Models, KDD, Data Mining, Classification, Soft-Computing. 



Proceedings of PAKDD99, Beijing, China, April.26-28,1999. 

Mining Classification Knowledge Based on 
Cloud Models 

Jianhua Fan  and  Deyi Li 

The Institute of Electronic System Engineering 
No. 307, Zhengchang Zhuang, Fengtai District, Beijing, China, 100039 

Jianhuaf@hotmail.com 
ziqin@public2.bta.net.cn 

 
 

Abstract: Data classification is an important research topic in the field of data mining and 
knowledge discovery. It finds the common properties among a set of objects in a database and 
classifies them into different classes. There have been many data classification methods studied, 
including decision-tree method, statistical methods, neural networks, rough sets, etc. In this paper, 
we present a new mathematical representation of qualitative concepts—Cloud Models. With the 
new models, mapping between quantities and qualities becomes much easier and interchangeable. 
Based on the cloud models, a novel qualitative strategy for data classification in large relational 
databases is proposed. Then, the algorithms for classification are developed, such as cloud 
generation, complexity reduction, identifying interacting attributes, etc. Finally, we perform 
experiments on a challenging medical diagnosis domain, acute abdominal pain. The results show 
the advantages of the model in the process of knowledge discovery.  
 
Keywords: Cloud Models, KDD, Data Mining, Classification, Soft-Computing. 

 

1 Introduction 
     With massive amounts of data stored in databases, mining information and knowledge in 
databases has become an important issue in recent research. Researchers in many different fields 
have shown great interest in data mining and knowledge discovery in databases (DMKD)[1].  
 
Data classification is an important research topic in the field of data mining and knowledge 
discovery. It finds the common properties among a set of objects in a database and classifies them 
into different classes. To construct a classification model, a small database E is treated as the 
training set, in which each tuple consists of the same set of multiple attributes (or features) as the 
tuples in a large database W, and additionally, each tuple has a known class identity (label) 
associated with it. The objective of the classification is to first analyze the training data and 
develop an accurate description or a model for each class using the features present in the data. 
Such class descriptions are then used to classify future test data in the database W or to develop a 
better description (called classification rules) for each class in the database.[2] Applications of 
classification include medical diagnosis, performance prediction, selective marketing, etc. 
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In machine learning studies, a decision-tree classification method, developed by Quinlan[2,14], 
has been influential. It is a supervised learning method that constructs decision trees from a set of 
examples. The method first chooses a subset of the training examples to form a decision tree. If 
the tree does not give the correct answer for all the objects, a selection of the exceptions is added 
to the window and the process continues until the correct decision set is found. The eventual 
outcome is a tree in which each leaf carries a class name, and each interior node specifies an 
attribute with a branch corresponding to each possible value of that attribute.  
 
A typical decision tree learning system, ID-3[2], adopts a top-down irrevocable strategy that 
searches only part of the search space. It guarantees that a simple, but not necessarily the simplest, 
tree is found. ID-3 uses an information-theoretic approach aimed at minimizing the expected 
number of tests to classify an object. The attribute selection part of ID-3 is based on the plausible 
assumption that the complexity of the decision tree is strongly related to the amount of 
information conveyed by this message. An information-based heuristic selects the attribute 
providing the highest information gain, i.e., the attribute that minimizes the information needed in 
the resulting subtrees to classify the elements. The ID-3 system uses information gain as the 
evaluation functions form classification, with the following evaluation function: 

                 i = Σ (pi ln(pi)), 
where pi is the probability that an object is in class i. An extension to ID-3, C4.5[14],extends the 
domain of classification from categorical attributes to numerical ones.  
 
Shan. et. al.[9,10,11] proposed an approach, which uses rough sets to ensuring the completeness of 
the classification and the reliability of the probability estimate prior to rule induction. Briefly, 
Rough sets method performs three steps to obtain classification rules. First, it generalizes the 
condition attributes as necessary to increase the credibility of the classification. It applies 
attribute-oriented concept tree ascension to reduce the complexity of an information system, and 
generalizes a condition attribute to a certain level based on the attribute’s concept tree, which is 
provided by knowledge engineers or domain experts. The number of possible values at a higher 
level of an attribute is always smaller than at a lower level of, so the theoretical complexity is 
reduced. Then, the method identifies clusters of interacting attributes, i.e., search for credible 
classifications of the database tuples based on these clusters. A classification is credible if it is 
complete or almost complete with respect to the domain from which the database was collected.  
Finally, it searches for acceptable classifications. Classifications, which result in the good 
approximation of the concept of the interest, in the rough sets sense, are subsequently selected to 
obtain the classification rules. 
 
There have been many other approaches on data classification, such as statistical approaches[15]. 
There have also been some studies of classification techniques in the context of databases[16]. An 
interval classifier has been proposed in [17] to reduce the cost of decision tree generation. An 
attribute-oriented induction method has been developed for mining classification rules in 
relational databases[16]. The work in [17] explores rule extraction in a database based on neural 
networks. 
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In this paper, we present a new mathematical representation of qualitative concepts—Cloud 
Models. With the new models, a novel approach for data classification in large relational databases 
is proposed. 
 
 

2 The Qualitative Strategy of Data Classification 

2.1 The Abstract Model of Data Classification 

     A relational database can be viewed as an information system. Formally, an information 
system S is a quadruple <U, A, V, F>, where U is a nonempty set of objects called universe; A is a 
finite set of attributes consisting of condition attributes C and decision attributes D such that 
A=C∪D and C∩D=∅; V=∪p∈AVp is a nonempty finite set of values of attributes A and Vp is the 
domain of the attribute p (the set of values of attribute p); F : U×A→V is an information function 
which assigns particular values from the domain of attributes A to objects such that f(xi,p)∈Vp for 
all xi ∈U and p∈A. 
 
Any subset of condition attributes defines a classification of the universe of objects U as follows. 
Let B be a nonempty subset of C, and let xi,x j be members of U. The projection of the function f 
onto attributes belongs to the subset B will be denoted as f B . A binary relation R(B), called an 
indiscernibility relation, is first defined as follows: 

R(B) = {( xi , xj) ∈ U2 :  fB (xi) = fB (xj)} 
We say that xi and xj are indiscernible by a set of attributes B in S iff f (xi , p)=f (xj , p) for every 
p∈B. R(B) is an equivalence relation on U for every B⊂C, which classifies the objects in U into a 
finite, preferably small, number of equivalence classes. The set of equivalence classes is called the 
classification R*(B). The pair <U, R(B)> is called approximation space.[18] 

 
The above model cannot, however, be directly applied to most KDD systems. A database 
represents only a subset (a sample) U’ of the universe U about which we are trying to discover 
something. Depending on the selection of the information function f, the subset of the attributes B, 
the size and the distribution of objects in the sample U’, we may or may not have all values of the 
information function fB in our database. If all values are present then our knowledge about the 
classification is complete (despite not having all domain objects in the database); otherwise our 
knowledge about the classification is incomplete. To properly reason about the relationships 
occurring in U, the classification must be complete; otherwise, false conclusions may be drawn. 
 
In this situation, qualitative strategy will take the advantage to deal with such kind of problems. 
 

2.2 Qualitative Strategy 

     Data Mining and knowledge discovery in databases(DMKD) is considered to be the 
non-trivial extraction of implicit, previously unknown, and potentially useful knowledge from 
large numbers of small, very specific instances. The laboriousness of the development of realistic 
DMKD applications, previously reported examples of knowledge discovery in the literature and 
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our experience in real-world knowledge discovery situations all lead us to believe that knowledge 
discovery is a representation-sensitive, human-oriented task consisting of friendly interactions 
between a human and a discovery system. Current work in DMKD uses some form of (extended 
or modified) SQL as the data mining query language and some variant of predicate calculus for 
the discovered results. The variants frequently contain some form of quantitative modifier, such as 
confidence, support,, threshold, and so forth[19]. This tends to lead to discovered rules such as : 

With 37.8% of support and 15.7% of confidence, patients whose age are between 
20 and 30 and have acute pain on the low-right side of the abdomen more than 
6.24 hours can be classified as appendicitis. 

Rather than the qualitative representation: 
Generally speaking, young patients who have acute low-right abdominal pain 
for a relative long time may get appendicitis. 
 

This is, however, more than a simple issue of semantics and friendliness. The former rules are not 
robust under change to the underlying database, while the latter ones are. In a real, very large 
database, data are often infected with errors due to the nature of collection. In addition, an on-line 
discovery system supporting a real database must keep up with changing data. It does not make 
much sense if a very precisely quantitative assertion is made about the behavior of an application 
domain based on such a database. It may be necessary, to some extent, to abandon the high 
standards of rigor and precision used in conventional quantitative techniques. At this moment, a 
piece of qualitative knowledge extracted may be more tolerant and robust. Clearly, quantitative 
results such as confidence and support cannot remain constant under conditions of any change. By 
contrast, qualitative representation will remain true until there is a substantial change in the 
database. 
 
On the other hand, quantitative knowledge discovered at some lower levels of generalization in 
DMKD may still be suitable, but the number of the extracted rules increases. In contrast, as the 
generalization goes up to a higher level of abstraction, the discovered knowledge is more strategic. 
The ability to discovery quantitative and yet significant knowledge about the behavior of an 
application domain from a very large database diminishes until a threshold may be reached 
beyond which precision and significance (or relevance) become almost mutually exclusive 
characteristics. That is to say that, if the generalization to a very large database system exceeds a 
limit, the reality and exactness of its description become incompatible. This has been described as 
the principle of incompatibility. To describe phenomena qualitatively, we take linguistic variables 
and linguistic terms and show how quantitative and qualitative inference complement and interact 
with each other in a simple mechanism. 
 
Our point of departure in this paper is to represent linguistic terms in logical sentences or rules. 
We imagine a linguistic variable that is semantically associated with a list of all the linguistic 
terms within a universe of discourse.  For example,  “age” is a linguistic variable if its values 
are “young”,  “middle-age”, “old”, “very old” and so forth, rather than the real ages which are 
considered as the universe of discourse of the linguistic variable “age,'' say from 0 to 120.  In the 
more general case, a linguistic variable is a tri-tuple {X, T(x), Cx(u)} in which X is the name of 
the variable, T(x) is the term-set of X; that is, the collection of its linguistic values, U is a universe 
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of discourse, Cx (u) is a compatibility function showing the relationship between a term x in T(x) 
and U.  More precisely, the compatibility function maps the universe of discourse into the 
interval [0,1] for each u in U.  
 
It is important to understand the notion of compatibility functions. Consider a set of linguistic 
terms, T,  in a universe of discourse, U, --- for example, the linguistic term, “young” in the 
interval [0,100].  T is characterized by its compatibility function Cx : u [0,1].  The statement that 
the compatibility of, say, “28 years old” with “young” is about 0.7,  has a relationship both to 
fuzzy logic and probability. 
 
In relation to fuzzy logic, the correct interpretation of the compatibility value “0.7” is that it is an 
indication of the partial membership to which the element “age-value 28” belongs to the fuzzy 
concept of the label “young”. To understand the relationship with probability on the other hand, 
the correct interpretation of the compatibility value “0.92” is that it is merely subjective indication.  
Human knowledge does not conform to such a fixed crisp membership degree “0.7” at the “28 
years old”. There do not exist any unique partial membership values, which could be universally 
accepted by human beings to the universe of discourse U.  But there is a random variable 
showing that the membership degree at “28 years old” takes a random value, behind which a 
subjective probability distribution is obeyed.  The degree of compatibility takes on random value 
itself. This type of randomness is adhered to the fuzziness. 
 
Regarding syntactic generation, we shall usually assume that a linguistic variable is structured in 
the sense that it is associated with two rules. The first is the atomic generator rule. It specifies the 
manner in which a linguistic atom, which cannot be spliced into any smaller parts, may be 
generated. The second, the semantic rule, specifies a procedure for computing composite linguistic 
terms based on linguistic atoms. 
 
In addition to linguistic atoms, a linguistic term may involve connectives (such as “and”, “or”, 
“either” and “neither” ), the negation (“not”) and the hedges (such as “very”, “more or less”, 
“completely”, “quite”, “fairly”, “extremely” and “somewhat”). The linguistic connectives, hedges 
and negation may be treated as (some form of) soft operators which modify the meaning of their 
operands, linguistic atoms, in a soft computing fashion to become composite linguistic terms. That 
is the business of the semantic rule[19]. 
 

3 Qualitative Representation Based on Cloud Models 

3.1 Cloud Models 

     Following the important characteristics of linguistic variables and terms, we define a new 
concept of cloud models to represent linguistic terms. Let U be the set, U = {u}, as the universe of 
discourse, and T, a linguistic term associated with U.  The membership degree of u in U to the 
linguistic term T, CT (u), is a random variable with a probability distribution.  CT(u) takes values 
in [0,1].  A membership cloud is a mapping from the universe of discourse U to the unit interval 
[0,1].  
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The concept of membership clouds is often pictured as two-dimensional graphs. The geometry of 
membership clouds is a great aid in understanding the uncertainty. It is important to see the 
properties of the clouds. First of all, the mapping from all u in U to the interval [0,1], is an 
one-point to multi-point transition, producing a membership cloud, rather than a membership 
curve. Secondly, any particular drop of the cloud may be paid little attention to,  however, the 
total shape of the cloud, which is visible, elastic, boundless and movable, is most important (see 
Fig. 1).  That is why we use the terminology ``cloud'' to name it. Thirdly, the mathematics 
expected curve (MEC) of a membership cloud may be considered as its membership function from 
the fuzzy set theory point of view. Finally, the definition has effectively integrated the fuzziness 
and randomness of a linguistic term in a unified way.  In the cloud, fuzziness lies at the center, 
and there may be nothing to do with probability, but there is a probability adhered on the fuzziness 
from the statistical point of view. We can see the integrated uncertainty of fuzziness and 
randomness and the convergent properties of the cloud model. The cloud concept provides a 
means of both qualitative and quantitative characterization of linguistic terms.[3,4] 

 
Fig.1 Normal Cloud with digital characteristic Ex=20 En=0.7 He=0.025 

 
The bell-shaped clouds, called normal clouds are most fundamental and useful in representing 
linguistic terms.  Since some people may get used to the concept of conventional membership 
functions, we could also use the normal membership function to represent the mathematical 
expected curve (MEC) of the cloud model.  The digital parameters of a normal cloud 
characterizes the quantitative meaning of a linguistic atom.  The Gaussian distribution 
transformation is used in a very effective way in characterizing normal clouds. A normal cloud is 
described with only three digital characteristics, expected value (Ex),  entropy (En) and hyper 
entropy (He). 
 
The expected value Ex of a cloud is the position at the universe of discourse, corresponding to the 
center of gravity of the cloud.  In other words, the element Ex in the universe of discourse fully 
belongs to the linguistic term represented by the cloud model. The entropy, En, is a measure of the 
fuzziness of the concept over the universe of discourse showing how many elements in the 
universe of discourse could be accepted to the linguistic term.  It should be noticed that the 
entropy defined here is a generic notion, and it need not be probabilistic.  The entropy decreases 
as the MEC bandwidth decreases, Only if upon the narrowing cloud turns to be a precise 
numerical value is formed, the entropy becomes zero. Looking at the normal cloud in detail we see 
that its thickness is uneven. The hyper entropy, He, is a measure of the uncertainty of the entropy 
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En.  Close to the waist of the cloud, corresponding to the center of gravity, cloud drops are most 
dispersed, while at the top and bottom the focusing is much better. The discrete degree of cloud 
drops depends on He.[3,4] 
 

3.2 Cloud Generators 

     Given three digital characteristics Ex, En, and He, to represent a linguistic term, a set of 
cloud drops may be generated by the following algorithm: 
 
Algorithm 1: Normal Cloud Generation 
Input: the expected value of cloud Ex, the entropy of cloud En, 
      the hyper entropy of cloud He, the number of drops N. 
Output: a normal cloud with digital characteristics Ex, En, and He.  

1)  Produce a random value x which satisfies with the normal distribution probability of 
mean = Ex, and standard error = En; 

2)  Produce a random value En’ which satisfies with the normal distribution probability of 
mean = En, and standard error = He; 

3)  Calculate     2)'(2

2)(

NE

XEx

ey

−−

=  ; 

4)  Let (x, y) be a cloud drop in the universe of discourse; 
5)  Repeat 1-4 until the number of drops required all generated. 

  
The idea of using only three digital characteristics to generate a cloud is creative. A series of 
linguistic term generators have been implemented both in hardware and software and are a 
patented invention in China [27]. The generator could produce as many drops of the cloud as you 
like (Fig. 1). This kind of generators is called a forward cloud generator. All the drops obey the 
properties described above.  Cloud-drops may also be generated upon conditions (see Fig. 2). It 
is easy to set up a half-up or half-down normal cloud generator with the similar strategy, if there is 
a need to represent such a linguistic term. 

 
 
 

 
 
 

    (a) On the condition of xi                 (b) On the condition of “µi” 
 

Fig. 2  Generators on condition 
 
It is natural to think about the generator mechanism in an inverse way.  Given a number of drops, 
as samples of a normal cloud, the three digital characteristics Ex, En, and He could be obtained to 
represent the corresponding linguistic term. This kind of cloud generators may be called backward 
cloud generators. It is easy to see that some approximation has to be made if only a few drops are 
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given. Of course, the more drops, the more accurate to the generated Ex, En, and He. The 
robustness of the backward cloud generators in our experiments is also very promising if there are 
some noisy drops mixed in. Since the cloud model represents linguistic terms, the forward and 
backward cloud generators can be served interchangeably to bridge the gap between quantitative 
and qualitative knowledge[3,4]. 
 

3.3 Construction of Qualitative Rules Using Cloud Models 

     We may immediately use two forward cloud generators to construct a qualitative rule, ``If A 
then B,'' if the digital characteristics of the linguistic terms A and B in that rule are given.  See 
Figure 3, in which, the membership degree, µ, produced by an input x to the generator CGA 
represents the activated strength of the rule which goes to control the generator CGB to produce a 
set of drops quantitatively.  
   
        
 
 
 
           Xi 

 
Fig. 3  A qualitative rule implemented by cloud generators 

 
 

4  Classification with Cloud Models 

4.1 Reduction of Classification Complexity and Softening 

Thresholds 

     In KDD-related problems, the universe U is finite and is highly desirable for it to be small. 
Only finite classifications are “learnable,” i.e., we can potentially acquire complete knowledge 
about such classifications. Unfortunately, most finite classifications are not learnable due to the 
excessively large number of possible equivalence classes. Only a small fraction of all possible 
classifications expressible in terms of the indiscernibility relation are learnable. 

 
To evaluate the computational tractability of the finite classification learning problem, we adopt 
the notion proposed by Ning Shan in [9]—classification complexity, defined as the number of 
equivalence classes in the classification. In practice, this number is usually not known in advance. 
Instead, a crude upper bound on the classification complexity for a subset of attributes B⊆C, can 
be computed “a priori” by the following fomula: 

∏
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The quantity TC(B,V) is called the theoretical complexity of the set of attributes B given the set of 
values V of the attributes B. If the number of attributes and the size of the domain Vp for each 
attribute is large, then TC(B,V) grows exponentially large. It is very difficult to find a credible 
classification based on a large number of attributes unless the attributes are strongly dependent 
(e.g., functionally dependent) on each other (limiting the number of equivalence classes). 

 
Complexity reduction increases the credibility of the classification by generalizing condition 
attributes. The information generalization procedure applies attribute-oriented concept tree 
ascension [5,6,7,8] to reduce the complexity of an information system. It generalizes a condition 
attribute to a certain level based on the attribute’s concept tree, which is provided by knowledge 
engineers or domain experts. Trivially, the values for any attribute can be represented as a 
one-level concept tree where the root is the most general value “ANY” and the leaves are the 
distinct values of the attribute. The medium level nodes in the concept tree with more than two 
levels are qualitative terms, which are expressed in cloud models (see Fig. 3). The data 
corresponds to higher level nodes must cover the data corresponds to all the descendant nodes. 
The transformations between qualitative terms and quantitative values of condition attributes are 
implemented through cloud models.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Concept Tree with Qualitative Terms 
We modified the algorithm proposed by Shan et al. In [9], which extracts a generalized 
information system. In this algorithm, there are two important concepts  the attribute threshold 
and the theoretical complexity threshold, which constrain the generalization process. Since the 
exact values of the thresholds are very hard to determine, we apply the linguistic terms to soften 
them in our modified algorithm. The two linguistic terms are represented with cloud models. Since 
the thresholds are not exact values, we call them soft thresholds. The entropy of soft thresholds 
can effectively control cycle numbers. This is a novel contribution of this paper. 
 
Condition attributes are generalized by ascending their concept trees until the number of values for 
each attribute is less than or equal to the user-specified soft attribute threshold for that attribute 
and the theoretical complexity of all generalized attributes is less than or equal to the 
user-specified soft theoretical complexity threshold. For each iteration, one attribute is selected for 
generalization (this selection can be made in many ways. Lower level concepts of this attribute are 
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replaced by the concepts of the next higher level. The number of possible values at a higher level 
of an attribute is always smaller than at a lower level, so the theoretical complexity is reduced. 
[5,6,7,8,9] 
 
Algorithm 2: Reduction of Classification Complexity 

Input: (1)The original information system S with a set of condition attributes Ci (1≤ i ≤ n); 
     (2) a set of H of concept trees, where each Hi ∈H is a concept hierarchy for the attribute Ci. 
     (3)S ti is a soft threshold for attribute Ci with digital characteristic (Exti, Enti, Heti) and di is 

the number of distinct values of attribute Ci; 
     (4) STC defined by user is a soft theoretical complexity threshold with digital characteristic 

(Extc, Entc, Hetc). 
Output: The generalized information system S’ 
S’ ← S 

∏=
=

n

i idTC
11  

Generate soft threshold values STC and Sti 
while TC1 >STC  and ∃di >Sti  do 

Select an attribute Ci ∈ C such that di /Sti is maximal 
Ascend tree Hi one level and make appropriate substitutions in S’ 
Remove duplicates from S’ 
Recalculate di  

Recalculate ∏=
=

n

i idTC
11  

    Regenerate soft threshold values STC and Sti 
 

Endwhile 
 

4.2 Quality of Classification  

     Each combination of values of the decision attribute is a concept. Our main goal is to 
identify a credible classification for each such concept F∈R(D), based on some interacting 
attributes B. To evaluate the quality of the classification R*(B) with respect to the concept F, we 
use the following criterion[11]: 

∑
∈

−×=
)(*

)()()()(
BRE

B FPEFPEPFQ β     and 
))(1)((2

1
FPFP −

=β  

This criterion represents the average gain in the quality of information, reflected by P(F|E), used 
to make the classificatory decision F versus ¬F. In the absence of the classification R*(B), the 
only available information for this kind of the decision is the occurrence probability P(F). The 
quantity β is a normalization factor to ensure that QB is always within the range [0,1], with 1 
corresponding to the exact characterization of the concept (that is, when for every equivalence 
class E, P(F|E) is either 0 or 1) and 0 corresponding to the situation where the distribution of F 
within every equivalence class E is the same as in the universe U.[9] 
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4.3 Identifying Interacting Attributes 

The local discovery of interacting attributes has been reported in [10,11]. All condition 
attributes are grouped into disjoint clusters without considering the decision attribute(s). Each 
cluster contains attributes that are directly or indirectly dependent upon each other. In[9], a global 
discovery of interacting attributes is reported. The global discovery method selects a subset of 
condition attributes that are based on their relevance to the decision attribute(s). Here, we adopt 
the global generalization algorithm for attribute clusters. 
 
Algorithm 3: Identifying Interacting Attributes 
Input: C is a set of condition attributes 
      D is a set of decision attributes, and 
      γ is a soft dependency threshold with digital characteristic (Ex, En, He) 
Output: AttriCluster is a set of attribute’s clusters. 
AttriCluster ← a∈C 
C ← C - {a} 
Dep ← DEP{AttriCluster, D} 
Generate soft dependency threshold value γ 
While C ≠ ∅ and Dep <γ do 
   Forall attribute a ∈ AttriCluster do 
        C’ ← AttriCluster ∪ {a} 
        Depa ← DEP(C’,D) 
   Endfor 
Find the attribute x that has the maximum value of Depa 
AttriCluster ← AttriCluster ∪ {x}  
C ← C - {x} 
Dep ← DEP(AttriCluster, D) 
Regenerate soft dependency threshold value γ 
Endwhile 
 
DEP is a generalization of the concept quality measure QB. DEP(X,Y) measures degree of 
dependency between two groups of attributes X and Y: 

∑
∈

=
)(*

)()(),(
YRE

X EQEPYXDEP  

4.4 Search for Classifications 

     After reduction of complexity and identifying interacting attributes, we search for credible 
classifications of the database tuples based on some selected interacting attributes. A classification 
is credible if it is complete or almost complete with respect to the domain from which the database 
was collected. Here, we adopt the SLIQ(Supervised Learning In Quest) method, which was 
developed by Mehta et al.[12,13]. It is a supervised learning method that constructs decision trees 
from a set of examples. It uses a novel pre-sorting technique in the tree growing phase. This 
sorting procedure is integrated with a breadth-first tree growing strategy to enable classification of 
disk-resident datasets. SLIQ also uses a new tree-pruning algorithm that is inexpensive, and 
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results in compact and accurate trees. Since we can interchange between qualitative and 
quantitative representation, the supervising process is much easier, and the results are robust. The 
combination of these techniques enables it to scale for data sets with many attributes and classify 
data sets irrespective of the number of classes, attributes, and examples. 

  

4.5 Experiments and Results 

     In this section, we discuss the domain of acute abdominal pain, focusing on the models used 
for the diagnosis, which will test and verify our model and algorithms. The most serious common 
cause of acute abdominal pain is appendicitis, and in many cases a clear diagnosis of appendicitis 
is difficult, since other diseases such as Non-Specific Abdominal Pain (NSAP) can present similar 
signs and symptoms (findings). The tradeoff is between the possibility of an unnecessary 
appendectomy and a perforated appendix, which increases mortality rates five-fold. The high 
incidence of acute abdominal pain coupled with the poor diagnosis accuracy, make any 
improvements in diagnostic accuracy significant. 
 
The abdominal pain data used for this study consists of 10270 cases, each with 169 attributes. The 
class variable, final diagnosis, has 19 possible values, and the variables have a number of values 
ranging from 2 to 32 values. The resulting database addresses acute abdominal pain of 
gynaecological origin, based on case-notes for patients of reproductive age admitted to hospital, 
with no recent history of abdominal or back pain. In compiling the database, the first 202 cases 
were used in the design of the database itself; thus, they cannot be used for the purpose of testing 
any model. Moreover, out of the 10270 cases, the diagnosis of only 8950 cases was definitely 
known (definite diagnoses); the remaining 1320 cases were assigned the best possible diagnosis, 
as a presumed diagnosis. Finally, 120 patients occur more than once in the database. 

Class Variable Cloud Models Method C4.5 Expert Diagnosis 
Appendicitis 3707 3269 3770 

Stomach disease 3025 2750 3108 
Liver diseases 636 567 669 

Spleen diseases 304 288 310 
Gallbladder diseases 247 243 235 

Small intestine diseases 236 235 240 
Large intestine diseases 225 229 224 

Uterus diseases 221 220 212 
Kidney diseases 211 199 214 

Gallstone 163 167 180 
Duodenitis 118 139 145 
Colonitis 159 168 165 
Caecitis 138 150 156 
Rectitis 166 184 187 

Alimentary intoxication 134 141 145 
Acid intoxication 77 84 87 

Parcreatitis 54 61 68 
Intimitis 69 82 83 

Other diseases 380 1094 72 

Table 1. Classification Results for Acute Abdominal Pain 
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Our results show that 2 of 19 classes accounted for almost 67% of the cases, whereas each of the 
other classes accounted for 7% or less of the cases. For each of the 2 most common classes, since 
the probability distribution was induced from many cases, our model was significantly better than 
C4.5 methods (shown as table 1), correctly classifying about 89% of the cases.  
 
On the other hand, on the cases involving the other 17 classes,  C4.5 classifier performed better 
than the cloud models approach (not significantly better). This because the cloud models could not 
accurately estimate the complicated distributions from so few cases, leading to poor predictive 
accuracy. 
 
These results offer some insights into the cloud models. In complex domains with many attributes, 
such as the abdominal pain domain, feature selection may play a very important part in classifiers 
for diagnosis; this is especially true when the data set is relatively small. In such cases, it is 
difficult to accurately acquire classification rules for the larger data set. Moreover, in domains 
where there are sufficient cases (as for the two main classes in the abdominal pain data set), cloud 
models method plays very well since they can easily model attribute dependencies. However, if 
the number of cases is small, then the simple decision tree method may perform better. 
 

5  Conclusion 
     Data classification is a well-recognized operation in data mining and knowledge discovery 
research field and it has been studied extensively in statistics and machine learning literature. We 
described a novel approach to search for domain classification. The goal of the search is to find a 
classification or classifications that jointly provide a good, in the qualitative terms’ sense, 
approximation of the interest. We have presented a new mathematical representation of qualitative 
concepts—Cloud Models. With the new models, mapping between quantities and qualities 
becomes much easier and interchangeable. Based on them, we introduced the concept of soft 
threshold and concept tree with qualitative terms. We also developed algorithms for clouds 
generation, complexity reduction, and identifying interacting attributes, etc. After classification 
search, further steps in the qualitative approach to knowledge discovery involve classification 
analysis and simplification, rule induction and prediction, if required by any application. These 
aspects will require a lot of work, and have been omitted here, as they will be presented in detail 
in other publications.  
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