Abstract
Well-quasi orders in general, and homeomorphic embedding in particular, have gained popularity to ensure online termination of program analysis, specialisation and transformation techniques. It has been recently shown that the homeomorphic embedding relation is strictly more powerful than a large class of involved well-founded approaches. In this paper we provide some additional investigations on the power of homeomorphic embedding. We, however, also illustrate that the homeomorphic embedding relation suffers from several inadequacies in contexts where logical variables arise. We therefore present new, extended homeomorphic embedding relations to remedy this problem.
Part of the work was done while the author was Post-doctoral Fellow of the Fund for Scientific Research - Flanders Belgium (FWO).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Improving control in functional logic program specialization. In G. Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 262–277, Pisa, Italy, September 1998. Springer-Verlag.
M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Spezialisation of lazy functional logic programs. In Proceedings of PEPM’97, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 151–162, Amsterdam, The Netherlands, 1997. ACM Press.
M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven partial evaluation of functional logic programs. In H. Riis Nielson, editor, Proceedings of the 6th European Symposium on Programming, ESOP’96, LNCS 1058, pages 45–61. Springer-Verlag, 1996.
K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 10, pages 495–574. North-Holland Amsterdam, 1990.
R. Bol. Loop checking in partial deduction. The Journal of Logic Programming, 16(1&2):25–46, 1993.
M. Bruynooghe, D. De Schreye, and B. Martens. A general criterion for avoiding infinite unfolding during partial deduction. New Generation Computing, 11(1):47–79, 1992.
D. De Schreye and S. Decorte. Termination of logic programs: The never ending story. The Journal of Logic Programming, 19 & 20:199–260, May 1994.
D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H. Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and experiments. To appear in The Journal of Logic Programming, 1999.
N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116, 1987.
N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol. B, pages 243–320. Elsevier, MIT Press, 1990.
N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of the ACM, 22(8):465–476, 1979.
J. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of PEPM’93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 88–98. ACM Press, 1993.
R. Glück and J. Hatcliff, John Jørgensen. Generalization in hierarchies of online program specialization systems. In this volume.
R. Glück, J. Jørgensen, B. Martens, and M. H. Sørensen. Controlling conjunctive partial deduction of definite logic programs. In H. Kuchen and S. Swierstra, editors, Proceedings of the International Symposium on Programming Languages, Implementations, Logics and Programs (PLILP’96), LNCS 1140, pages 152–166, Aachen, Germany, September 1996. Springer-Verlag.
R. Glück and M. H. Sørensen. A roadmap to supercompilation. In O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 137–160, Schloß Dagstuhl, 1996. Springer-Verlag.
J. Gustedt. Algorithmic Aspects of Ordered Structures. PhD thesis, Technische Universität Berlin, 1992.
G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the LondonMathematical Society, 2:326–336, 1952.
G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of the ACM, 27(4):797–821, 1980.
N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation. Prentice Hall, 1993.
J. Jørgensen, M. Leuschel, and B. Martens. Conjunctive partial deduction in practice. In J. Gallagher, editor, Proceedings of the International Workshop on Logic Program Synthesis and Transformation (LOPSTR’96), LNCS 1207, pages 59–82, Stockholm, Sweden, August 1996. Springer-Verlag.
J. B. Kruskal. Well-quasi ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society, 95:210–225, 1960.
L. Lafave and J. Gallagher. Constraint-based partial evaluation of rewriting-based functional logic programs. In N. Fuchs, editor, Proceedings of the International Workshop on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463, pages 168–188, Leuven, Belgium, July 1998.
P. Lescanne. Rewrite orderings and termination of rewrite systems. In A. Tarlecki, editor, Mathematical Foundations of Computer Science 1991, LNCS 520, pages 17–27, Kazimierz Dolny, Poland, September 1991. Springer-Verlag.
P. Lescanne. Well rewrite orderings and well quasi-orderings. Technical Report No 1385, INRIA-Lorraine,France, January 1991.
M. Leuschel. The ecce partial deduction system and the dppd library of benchmarks. Obtainable via http://www.cs.kuleuven.ac.be/~dtai , 1996
M. Leuschel. Advanced Techniques for Logic Program Specialisation. PhD thesis, K.U. Leuven, May 1997. Accessible via http://www.ecs.soton.ac.uk/~mal .
M. Leuschel. Homeomorphic embedding for online termination. Technical Report DSSE-TR-98-11, Department of Electronics and Computer Science, University of Southampton, UK, October 1998.
M. Leuschel. On the power of homeomorphic embedding for online termination. In G. Levi, editor, Static Analysis. Proceedings of SAS’98, LNCS 1503, pages 230–245, Pisa, Italy, September 1998. Springer-Verlag.
M. Leuschel and D. De Schreye. Constrained partial deduction and the preservation of characteristic trees. New Generation Computing, 16(3):283–342, 1998.
M. Leuschel and B. Martens. Global control for partial deduction through characteristic atoms and global trees. In O. Danvy, R. Glück, and P. Thiemann, editors, Proceedings of the 1996 Dagstuhl Seminar on Partial Evaluation, LNCS 1110, pages 263–283, Schloß Dagstuhl, 1996. Springer-Verlag.
M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-variance in partial deduction of normal logic programs. ACM Transactions on Programming Languages and Systems, 20(1):208–258, January 1998.
N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Unfolding the mystery of mergesort. In N. Fuchs, editor, Proceedings of the International Workshop on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463, pages 206–225, Leuven, Belgium, July 1998.
J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The Journal of Logic Programming, 11(3& 4):217–242, 1991.
R. Marlet. Vers une Formalisation de l’Evaluation Partielle. PhD thesis, Université de Nice-Sophia Antipolis, December 1994.
B. Martens. On the Semantics of Meta-Programming and the Control of Partial Deduction in Logic Programming. PhD thesis, K.U. Leuven, February 1994.
B. Martens and D. De Schreye. Automatic finite unfolding using well-founded measures. The Journal of Logic Programming, 28(2):89–146, August 1996.
B. Martens, D. De Schreye, and T. Horváth. Sound and complete partial deduction with unfolding based on well-founded measures. Theoretical Computer Science, 122(1-2):97–117, 1994.
B. Martens and J. Gallagher. Ensuring global termination of partial deduction while allowing flexible polyvariance. In L. Sterling, editor, Proceedings ICLP’95, pages 597–613, Kanagawa, Japan, June 1995. MIT Press.
A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoretical Computer Science, 175(1):127–158, 1997.
L. Plümer. Termination Proofs for Logic Programs. LNCS446. Springer-Verlag, 1990.
L. Puel. Using unavoidable set of trees to generalize Kruskal’s theorem. Journal of Symbolic Computation, 8:335–382, 1989.
E. Ruf. Topics in Online Partial Evaluation. PhD thesis, Stanford University, March1993.
D. Sahlin. Mixtus: An automatic partial evaluator for full Prolog. New Generation Computing, 12(1):7–51, 1993.
M. H. Sørensen. Convergence of program transformers in the metric space of trees. In Mathematics of Program Construction, Proceedings of MPC’98, LNCS 1422, pages 315–337. Springer-Verlag, 1998.
M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercompilation. In J. W. Lloyd, editor, Proceedings of ILPS’95, the International Logic Programming Symposium, pages 465–479, Portland, USA, December 1995. MIT Press.
M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal of Functional Programming, 6(6):811–838, 1996.
J. Stillman. Computational Problems in Equational Theorem Proving. PhD thesis, State University of New York at Albany, 1988.
V. F. Turchin. The concept of a supercompiler. ACM Transactions on Programming Languages and Systems, 8(3):292–325, 1986.
W. Vanhoof and B. Martens. To parse or not to parse. In N. Fuchs, editor, Proceedings of the International Workshop on Logic Program Synthesis and Transformation (LOPSTR’97), LNCS 1463, pages 322–342, Leuven, Belgium, July 1997.
A. Weiermann. Complexity bounds for some finite forms of Kruskal’s theorem. Journal of Symbolic Computation, 18(5):463–488, November 1994.
D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic online partial evaluation. In Proceedings of the Conference on Functional Programming Languages and Computer Architectures, LNCS 523, pages 165–191, Harvard University, 1991. Springer-Verlag.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leuschel, M. (1999). Improving Homeomorphic Embedding for Online Termination. In: Flener, P. (eds) Logic-Based Program Synthesis and Transformation. LOPSTR 1998. Lecture Notes in Computer Science, vol 1559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48958-4_11
Download citation
DOI: https://doi.org/10.1007/3-540-48958-4_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65765-1
Online ISBN: 978-3-540-48958-0
eBook Packages: Springer Book Archive